
The Ceylon Language

Say more, more clearly

Version: 1.2

Table of Contents
Welcome to Ceylon ... vii
1. Introduction .. 1

1.1. Language overview ... 1
1.1.1. Runtime and platform .. 1

1.2. Type system ... 1
1.2.1. Mixin inheritance .. 2
1.2.2. Sum types, self types, and type families .. 2
1.2.3. Simplified generics ... 2
1.2.4. Union and intersection types ... 3
1.2.5. Type aliases and type inference ... 3
1.2.6. Metaprogramming .. 4

1.3. Object-oriented programming .. 4
1.3.1. Class initialization and instantiation ... 4
1.3.2. Functions, methods, values, and attributes ... 5
1.3.3. Defaulted parameters and variadic parameters .. 5
1.3.4. First-class functions and higher-order programming .. 5
1.3.5. Naming conventions, annotations, and inline documentation ... 5
1.3.6. Named arguments and tree-like structures .. 6
1.3.7. Modularity .. 6

1.4. Language module .. 6
1.4.1. Operators and operator polymorphism .. 6
1.4.2. Numeric and character types ... 6
1.4.3. Compile-time safety for null values and flow-sensitive typing ... 7
1.4.4. Streams and comprehensions .. 7
1.4.5. Sequences and tuples ... 7

2. Lexical structure .. 9
2.1. Whitespace .. 9
2.2. Comments ... 9
2.3. Identifiers and keywords ..10
2.4. Literals ...11

2.4.1. Numeric literals ...11
2.4.2. Character literals ...13
2.4.3. String literals ..14

2.5. Operators and delimiters ..14
3. Type system ..16

3.1. Identifier naming ..17
3.2. Types ...17

3.2.1. Member distinctness ...18
3.2.2. Subtyping ...18
3.2.3. Union types ..19
3.2.4. Intersection types ...19
3.2.5. The bottom type ..20
3.2.6. Principal typing ...21
3.2.7. Type expressions ...21
3.2.8. Type abbreviations ...22
3.2.9. Type inference ..23
3.2.10. Type alias elimination ...24

3.3. Inheritance ..24
3.3.1. Inheritance and subtyping ..25
3.3.2. Extension ...25
3.3.3. Satisfaction ...26

3.4. Case enumeration and coverage ..27
3.4.1. Coverage ..27
3.4.2. Cases ...28
3.4.3. Generic enumerated types ..29
3.4.4. Disjoint types ..29

3.5. Generic type parameters ..30

Project Ceylon: 1.2 ii

3.5.1. Type parameters and variance ..31
3.5.2. Variance validation ..31
3.5.3. Generic type constraints ..33

3.6. Generic type arguments ...34
3.6.1. Type arguments and variance ...35
3.6.2. Type argument substitution ..35
3.6.3. Type arguments and type constraints ...35
3.6.4. Applied types and and variance ..36
3.6.5. Type argument inference ...37

3.7. Principal instantiations and polymorphism ..39
3.7.1. Inherited instantiations ..39
3.7.2. Type argument distinctness ..39
3.7.3. Principal instantiation inheritance ...40
3.7.4. Principal instantiation of a supertype ...41
3.7.5. Refinement ...41
3.7.6. Qualified types ..42
3.7.7. Realizations ..42

4. Declarations ...43
4.1. Compilation unit structure ..43

4.1.1. Toplevel and nested declarations ...44
4.1.2. Packages ..44

4.2. Imports ..44
4.2.1. Type imports ..45
4.2.2. Anonymous class imports ..45
4.2.3. Function and value imports ..46
4.2.4. Alias imports ..46
4.2.5. Wildcard imports ...46
4.2.6. Imported name ..47

4.3. Parameters ..47
4.3.1. Parameter lists ...48
4.3.2. Required parameters ...48
4.3.3. Defaulted parameters ..48
4.3.4. Value parameters ...49
4.3.5. Callable parameters ..49
4.3.6. Variadic parameters ...50

4.4. Interfaces ..50
4.4.1. Interface bodies ...51
4.4.2. Interface inheritance ...51
4.4.3. Sealed interfaces ..52
4.4.4. Enumerated interfaces ..52
4.4.5. Interface aliases ...52
4.4.6. Dynamic interfaces ..52

4.5. Classes ...53
4.5.1. Callable type of a class ...54
4.5.2. Initializer section ...54
4.5.3. Declaration section ...55
4.5.4. Class inheritance ...56
4.5.5. Abstract, final, sealed, formal, and default classes ..57
4.5.6. Member class refinement ..58
4.5.7. Anonymous classes ..59
4.5.8. Enumerated classes ..60
4.5.9. Class aliases ...60

4.6. Type aliases ..61
4.7. Functions ..62

4.7.1. Callable type of a function ...62
4.7.2. Functions with blocks ...62
4.7.3. Functions with specifiers ...63
4.7.4. Function return type inference ..63
4.7.5. Forward declaration of functions ...64
4.7.6. Functions with multiple parameter lists ..64
4.7.7. Formal and default methods ...65
4.7.8. Method refinement ...65

The Ceylon Language

Project Ceylon: 1.2 iii

4.8. Values ..66
4.8.1. References ..67
4.8.2. Getters ...68
4.8.3. Setters ...68
4.8.4. Value type inference ...68
4.8.5. Forward declaration of values ..69
4.8.6. Formal and default attributes ..69
4.8.7. Attribute refinement ...70

4.9. Constructors ..71
4.9.1. Callable type of a constructor ...72
4.9.2. Partial constructors ...72
4.9.3. Constructor delegation ..72

5. Statements, blocks, and control structures ..73
5.1. Block structure and references ..73

5.1.1. Declaration name uniqueness ...74
5.1.2. Scope of a declaration ...74
5.1.3. Visibility ..75
5.1.4. Hidden declarations ..76
5.1.5. References and block structure ...77
5.1.6. Type inference and block structure ..78
5.1.7. Unqualified reference resolution ...78
5.1.8. Qualified reference resolution ..79

5.2. Patterns and variables ..80
5.2.1. Variables ..80
5.2.2. Patterns ..81
5.2.3. Pattern variables ..81
5.2.4. Tuple patterns ...81
5.2.5. Entry patterns ..82

5.3. Blocks and statements ...82
5.3.1. Expression statements ...82
5.3.2. Control directives ..83
5.3.3. Specification statements ..84
5.3.4. Destructuring statements ...85
5.3.5. Dynamic blocks ...85
5.3.6. Definite return ...86
5.3.7. Definite initialization ..86
5.3.8. Definite uninitialization ..87

5.4. Conditions ..88
5.4.1. Boolean conditions ...88
5.4.2. Assignability conditions ..89
5.4.3. Existence and nonemptiness conditions ..90
5.4.4. Case conditions ...91

5.5. Control structures and assertions ...92
5.5.1. if/else ..93
5.5.2. switch/case/else ...93
5.5.3. for/else ..94
5.5.4. while ...95
5.5.5. try/catch/finally ...95
5.5.6. Assertions ..97

6. Expressions ..98
6.1. Literal values ...98

6.1.1. Integer number literals ..98
6.1.2. Floating point number literals ...98
6.1.3. Character literals ...99
6.1.4. Character string literals ...99

6.2. String templates ...99
6.3. Self references ...99

6.3.1. this .. 100
6.3.2. outer ... 100
6.3.3. super ... 100

6.4. Anonymous functions ... 100
6.4.1. Anonymous function parameter type inference .. 101

The Ceylon Language

Project Ceylon: 1.2 iv

6.5. Compound expressions .. 101
6.5.1. Base expressions ... 102
6.5.2. Member expressions ... 102
6.5.3. Constructor expressions .. 103
6.5.4. Value references .. 103
6.5.5. Callable references ... 103
6.5.6. Static expressions .. 104
6.5.7. Static value references .. 105
6.5.8. Static callable references ... 105

6.6. Invocation expressions .. 105
6.6.1. Direct invocations .. 106
6.6.2. Default arguments .. 107
6.6.3. The type of a list of arguments ... 107
6.6.4. Listed arguments ... 107
6.6.5. Spread arguments .. 107
6.6.6. Comprehensions .. 108
6.6.7. Positional argument lists ... 109
6.6.8. Named argument lists ... 109
6.6.9. Anonymous arguments ... 110
6.6.10. Specified arguments ... 110
6.6.11. Inline declaration arguments ... 110
6.6.12. Iterable and tuple enumeration .. 111
6.6.13. Dynamic enumerations .. 112

6.7. Conditional expressions, let expressions, and anonymous class expressions 112
6.7.1. if/then/else expressions ... 112
6.7.2. switch/case/else expressions .. 113
6.7.3. Let expressions .. 113
6.7.4. Inline anonymous class expressions ... 113

6.8. Operators .. 114
6.8.1. Operator precedence ... 115
6.8.2. Operator definition ... 116
6.8.3. Basic invocation and assignment operators ... 116
6.8.4. Equality and comparison operators .. 117
6.8.5. Logical operators ... 118
6.8.6. Operators for handling null values ... 118
6.8.7. Correspondence, subrange, and stream operators .. 119
6.8.8. Operators for creating objects ... 120
6.8.9. Conditional operators ... 120
6.8.10. Arithmetic operators ... 120
6.8.11. Set operators ... 122

6.9. Metamodel expressions ... 122
6.9.1. Type of a metamodel expression ... 123

6.10. Reference expressions ... 124
6.10.1. Declaration references ... 124
6.10.2. Package and module references ... 125
6.10.3. Type of a reference expression .. 126

7. Annotations .. 127
7.1. Annotations of program elements .. 127

7.1.1. Annotation lists ... 127
7.1.2. Annotation arguments ... 127

7.2. Annotation definition .. 128
7.2.1. Annotation constructors .. 128
7.2.2. Annotation types ... 129
7.2.3. Constrained annotation types ... 129

7.3. Annotation values .. 129
7.4. Language annotations ... 130

7.4.1. Declaration modifiers ... 130
7.4.2. Documentation .. 131

7.5. Serialization .. 131
8. Execution ... 132

8.1. Object instances, identity, and reference passing .. 132
8.1.1. Value type optimizations ... 133

The Ceylon Language

Project Ceylon: 1.2 v

8.1.2. Type argument reification .. 133
8.2. Sequential execution and closure ... 134

8.2.1. Frames ... 134
8.2.2. Current instances and current frames ... 134
8.2.3. Current instance of a class or interface ... 135
8.2.4. Current frame of a block ... 135
8.2.5. Initialization ... 136
8.2.6. Class instance optimization .. 136
8.2.7. Execution of expression and specification statements .. 136
8.2.8. Execution of control directives ... 136
8.2.9. Exception propagation .. 137
8.2.10. Initialization of toplevel references .. 137
8.2.11. Initialization of late references .. 137

8.3. Execution of control structures and assertions .. 137
8.3.1. Evaluation of condition lists ... 137
8.3.2. Validation of assertions ... 138
8.3.3. Execution of conditionals .. 138
8.3.4. Execution of loops ... 138
8.3.5. Exception handling .. 139
8.3.6. Dynamic type checking ... 139

8.4. Evaluation, invocation, and assignment .. 139
8.4.1. Dynamic dispatch .. 140
8.4.2. Evaluation .. 140
8.4.3. Assignment .. 140
8.4.4. Invocation .. 141
8.4.5. Evaluation of anonymous functions ... 141
8.4.6. Evaluation of enumerations ... 141
8.4.7. Evaluation of spread arguments and comprehensions .. 142

8.5. Operator expressions ... 143
8.5.1. Operator expression optimization .. 143
8.5.2. Numeric operations .. 143

8.6. Evaluation of comprehensions .. 144
8.6.1. for clause ... 144
8.6.2. if clause ... 144
8.6.3. Expression clause .. 145

8.7. Concurrency .. 145
9. Module system .. 146

9.1. The module runtime and module isolation ... 146
9.1.1. Module isolation for the Java platform ... 146
9.1.2. Module isolation for the JavaScript platform ... 146
9.1.3. Assemblies ... 147

9.2. Source layout .. 147
9.3. Module architecture .. 147

9.3.1. Module names and version identifiers .. 148
9.3.2. Module archive names for the Java platform ... 149
9.3.3. Module script names for the JavaScript platform .. 149
9.3.4. Source archive names ... 149
9.3.5. Module archives .. 149
9.3.6. Module scripts .. 150
9.3.7. Source archives ... 150
9.3.8. Module repositories .. 151
9.3.9. Package descriptors .. 152
9.3.10. Module descriptors ... 152

The Ceylon Language

Project Ceylon: 1.2 vi

Welcome to Ceylon
This project is the work of a team of people who are fans of Java and of the Java ecosystem, of its practical orientation, of
its culture of openness, of its developer community, of its roots in the world of business computing, and of its ongoing
commitment to portability. However, we recognize that the language and class libraries, designed more than 15 years ago,
are no longer the best foundation for a range of today's business computing problems. We further recognize that Java
failed in one environment it was originally promoted for: the web browser.

The goal of this project is to make a clean break with the legacy Java SE platform, by improving upon the Java language
and class libraries, and by providing a modular architecture for a new platform based upon the Java Virtual Machine. A
further goal is to bridge the gap between the web client and server by supporting execution on JavaScript virtual machines.

Of course, we recognize that the ability to interoperate with existing Java code, thereby leveraging existing investment in
the Java ecosystem, is a critical requirement of any successor to the Java platform.

Java is a simple language to learn and Java code is easy to read and understand. Java provides a level of typesafety that is
appropriate for business computing and enables sophisticated tooling with features like refactoring support, code comple-
tion, and code navigation. Ceylon aims to retain the overall model of Java, while getting rid of some of Java's warts, and
improving upon Java's facilities for creating abstractions and writing generic libraries and frameworks.

Ceylon has the following goals:

• to be appropriate for large scale development, but to also be fun,

• to execute on the JVM, and on JavaScript virtual machines, and to interoperate with native Java and JavaScript code,

• to provide language-level modularity,

• to be easy to learn for Java and C# developers,

• to eliminate some of Java's verbosity, while retaining its readability—Ceylon does not aim to be the most concise/
cryptic language around,

• to provide an elegant and more flexible syntax to support frameworks, declarative programming, and meta-
programming, and, in particular

• to provide a declarative syntax for expressing hierarchical information like user interface definition, externalized data,
and system configuration, thereby eliminating Java's dependence upon XML,

• to support and encourage a more functional style of programming with immutable objects and first class functions,
alongside the familiar imperative mode,

• to expand compile-time typesafety with compile-time safe handling of null values, compile-time safe typecasts, and a
more typesafe approach to reflection, and

• to make it easy to get things done.

Unlike other alternative JVM languages, Ceylon aims to completely replace the legacy Java SE class libraries.

Therefore, the Ceylon SDK provides:

• a compiler that compiles Ceylon and Java source to Java bytecode, and cross-compiles Ceylon to JavaScript,

• command-line tooling for compiling modules and documentation, and managing modules in module repositories,

• Eclipse-based tooling for developing, compiling, testing, and debugging programs written in Ceylon,

• a module runtime for modular programs that execute on the Java Virtual Machine, and

• a set of class libraries that provides much of the functionality of the Java SE platform, together with the core function-
ality of the Java EE platform.

Project Ceylon: 1.2 vii

Chapter 1. Introduction

This document defines the syntax and semantics of the Ceylon language. The intended audience includes compiler imple-
mentors, interested parties who wish to contribute to the evolution of the language, and experienced developers seeking a
precise definition of language constructs. However, in light of the newness of the language, we will begin with an over-
view of the main features of the language and SDK. A brief introduction to programming in the language may be found at
the following address:

http://ceylon-lang.org/documentation/tour/

1.1. Language overview

Ceylon is a general-purpose programming language featuring a syntax similar to Java and C#. It is imperative, statically-
typed, block-structured, object-oriented, and higher-order. By statically-typed, we mean that the compiler performs extens-
ive type checking, with the help of type annotations that appear in the code. By object-oriented, we mean that the language
supports user-defined types and features a nominative type system where a type is a set of named attributes and operations,
and that it supports inheritance and subtype polymorphism. By higher-order, we mean that every referenceable program
element (every attribute, every operation, and every type) is also a value. By block-structured, we mean to say that the lan-
guage features lexical scoping and an extremely regular recursive syntax for declarations and statements.

Ceylon improves upon the Java language and type system to reduce verbosity and increase typesafety compared to Java
and C#. Ceylon encourages a more functional, somewhat less imperative style of programming, resulting in code which is
easier to reason about, and easier to refactor.

1.1.1. Runtime and platform

Ceylon programs execute in any standard Java Virtual Machine or on any JavaScript virtual machine, and take advantage
of the memory management and concurrency features of the virtual machine in which they execute. Ceylon programs are
packaged into modules with well-defined inter-module dependencies, and always execute inside a runtime environment
with module isolation.

The Ceylon compiler is able to compile Ceylon code that calls Java classes or interfaces, and Java code that calls Ceylon
classes or interfaces. JavaScript code is able to interact with Ceylon classes and functions compiled to JavaScript. Via a
special dynamic mode, code written in Ceylon may call functions defined natively in JavaScript.

Moreover, Ceylon provides its own native SDK as a replacement for the Java platform class libraries. Certain SDK mod-
ules depend upon services available only on the Java platform. Other SDK modules, including the core language module,
are cross-platform and may also be used in a JavaScript virtual machine.

Finally, the language supports the development of cross-platform modules that contain platform-specific implementation
code, via the native annotation.

import java.lang { System }

shared native void hello();

shared native("jvm") void hello() {
System.console()?.printf("Hello, world!");

}

shared native("js") void hello() {
dynamic {

alert("Hello, world!");
}

}

1.2. Type system

Ceylon, like Java and C#, features a hybrid type system with both subtype polymorphism and parameteric polymorphism.
A type is either a stateless interface, a stateful class, a type parameter, or a union or intersection of other types. A class, in-
terface, or type parameter may be defined as a subtype of another type. A class or interface may declare type parameters,
which abstract the definition of the class or interface over all types which may be substituted for the type parameters.

Project Ceylon: 1.2 1

Like C#, and unlike Java, Ceylon's type system is fully reified. In particular, generic type arguments are reified, eliminat-
ing many problems that result from type erasure in Java.

There are no primitive types or arrays in Ceylon—every Ceylon type can be represented within the language itself. So all
values are instances of the type hierarchy root Anything, which is a class. However, the Ceylon compiler is permitted to
optimize certain code to take advantage of the optimized performance of primitive types on the Java or JavaScript VM.

Furthermore, all types inferred or even computed internally by the Ceylon compiler are expressible within the language it-
self. Within the type system, non-denoteable types simply do not arise. The type system is based upon computation of
principal types. There is no legal expression which does not have a unique principal type expressible within the language.
The principal type of an expression is a subtype of all other types to which the expression could be soundly assigned.

1.2.1. Mixin inheritance

Ceylon supports a restricted form of multiple inheritance, often called mixin inheritance. A class must extend exactly one
other class. But a class or interface may satisfy (extend or implement) an arbitrary number of interfaces.

Classes hold state and define logic to initialize that state when the class is instantiated. A concrete class is a class that con-
tains only concrete member definitions. Concrete classes may be directly instantiated. An abstract class may have formal
(unimplemented) member declarations. Abstract classes may not be instantiated.

Interfaces may define concrete and formal members, but may not hold state (references to other objects) or initialization
logic. This restriction helps eliminate the problems traditionally associated with multiple inheritance. Ceylon never per-
forms any kind of "linearization" of the supertypes of a type. Interfaces may not be directly instantiated.

1.2.2. Sum types, self types, and type families

Ceylon does not feature Java-style enumerated types as a first-class construct. Instead, any abstract type may specify its
cases—an enumerated list of instances and/or subtypes. This facility is used to simulate both enumerated types and func-
tional-style algebraic sum types.

interface Identity of Person | Organization { ... }

abstract class Variance() of covariant | contravariant | invariant { ... }

A closely related feature is support for self types and type families. A self type is a type parameter of an abstract type (like
Comparable) which represents the type of a concrete instantiation (like String) of the abstract type, within the definition
of the abstract type itself.

interface Comparable<in Other> of Other
given Other satisfies Comparable<Other> { ... }

In a type family, the self type of a type is declared not by the type itself, but by a containing type which groups together a
set of related types.

1.2.3. Simplified generics

Ceylon doesn't have raw types, implicit bounds, or wildcard capture. And the Ceylon compiler never even uses any kind of
"non-denotable" type to reason about the type system. So generics-related error messages are understandable to humans.

Ceylon features declaration-site variance. A type parameter may be marked as covariant or contravariant by the class or
interface that declares the parameter.

interface Source<out Item> { ... }
interface Sink<in Item> { ... }

In order to support interoperation with Java, Ceylon also features Java-style use-site variance, with a much cleaner syntax
than Java's. A type argument may be marked as covariant or contravariant.

List<out Element> javaArrayList = ArrayList<Element>();

Ceylon has a somewhat more expressive system of generic type constraints with a cleaner, more regular syntax. The syn-

Introduction

Project Ceylon: 1.2 2

tax for declaring constraints on a type parameter looks very similar to a class or interface declaration. A type parameter
may have upper bound type constraints or even enumerated bounds.

interface Producer<out Value, in Rate>
given Value satisfies Object
given Rate of Float | Decimal { ... }

1.2.4. Union and intersection types

A union type, for example String|Number, or intersection type, for example Identifiable&List<String>, may be formed
from two or more types defined elsewhere.

Union types make it possible to write code that operates polymorphically over types defined in disparate branches of the
type hierarchy without the need for intermediate adaptor classes.

Float distance(Point|Location x, Point|Location y) => ... ;

Intersection types make it possible to operate polymorphically over all subtypes of a list of types.

void persistRemotely(Persistent&Serializable stuff) { ... }

Union and intersection types provide some of the benefits of structural ("duck") typing, within the confines of a nominat-
ive type system, and therefore certain Ceylon idioms are reminiscent of code written in dynamically-typed languages.

Union and intersection types underly the whole system of principal typing in Ceylon, forming the foundation for type in-
ference and flow-sensitive typing. In particular, they play a central role in generic type argument inference. For example,
the following expression has type HashMap<String,Integer|Float>:

HashMap { "float"->0.0, "integer"->0 }

1.2.5. Type aliases and type inference

Type aliases and type inference help reduce the verbosity of code which uses generic types, eliminating the need to re-
peatedly specify generic type arguments.

A type alias is similar to a C-style typedef.

interface Strings => Sequence<String>;

alias Number => Integer|Float|Whole|Decimal;

Local type inference allows a type annotation to be eliminated altogether. The type of a block-local value or function is in-
ferred from its definition if the keyword value or function occurs in place of the type declaration.

value name = person.name;

function sqrt(Float x) => x^0.5;

The type of a control-structure variable also may be inferred.

for (n in 0..max) { ... }

Ceylon features an especially elegant approach to generic type argument inference, making it possible to instantiate con-
tainer types, even inhomogeneous container types, without the need to explicitly mention any types at all.

value numbers = { -1, 0, -1, -1.0, 0.0, 1.0 };

By limiting type inference to local declarations, Ceylon ensures that all types may be inferred by the compiler in a single
pass of the source code. Type inference works in the "downward" and "outward" directions. The compiler is able to de-
termine the type of an expression without considering the rest of the statement or declaration in which it appears.

Introduction

Project Ceylon: 1.2 3

1.2.6. Metaprogramming

In other statically typed languages, runtime metaprogramming, or reflection, is a messy business involving untypesafe
strings and typecasting. Even worse, in Java, generic type arguments are erased at runtime, and unavailable via reflection.
Ceylon, uniquely, features a typesafe metamodel and typed metamodel expressions. Since generic type arguments are re-
ified at runtime, the metamodel fully captures generic types at both compile time and execution time.

Attribute<String,Integer> stringSize = `String.size`;

Ceylon's support for program element annotations is based around this metamodel. Annotations are more flexible than in
Java or C#, and have a much cleaner syntax.

1.3. Object-oriented programming

The primary unit of organization of an object-oriented program is the class. But Ceylon, unlike Java, doesn't require that
every function or value belong to a class. It's perfectly normal to program with a mix of classes and toplevel functions.
Contrary to popular belief, this does not make the program less object-oriented. A function is, after all, an object.

1.3.1. Class initialization and instantiation

A Ceylon class may have one or more named constructors, declared using the new keyword.

class Point {
Float x;
Float y;
new create(Float x, Float y) {

this.x = x;
this.y = y;

}
...

}

However, since constructors are often unnecessarily verbose, it is more common to define a Ceylon class with a parameter
list, and exactly one initializer—the body of the class.

class Point(Float x, Float y) { ... }

The Ceylon compiler guarantees that the value of any attribute of a class is initialized before it is used in an expression.

A class may be a member of an outer class. Such a member class may be refined (overridden) by a subclass of the outer
class. Instantiation is therefore a polymorphic operation in Ceylon, eliminating the need for a factory method in some cir-
cumstances.

Ceylon provides a streamlined syntax for defining anonymous classes. An anonymous class is a class which is instantiated
only in exactly the place it is defined. Among other uses, the object declaration is useful for creating singleton objects or
locally-scoped interface implementations.

object origin extends Point(0.0, 0.0) {}

Strictly speaking, an object declaration is just an abbreviated way to write a class with a value constructor. A value con-
structor defines a named instance of a class:

class Point {
Float x;
Float y;
new create(Float x, Float y) {

this.x = x;
this.y = y;

}
new origin {

this.x = 0.0;
this.y = 0.0;

}
...

}

Introduction

Project Ceylon: 1.2 4

1.3.2. Functions, methods, values, and attributes

Functions and values are the bread and butter of programming. Ceylon functions are similar to Java methods, except that
they don't need to belong to a class. Ceylon values are polymorphic, and abstract their internal representation, similar to
C# properties.

String name => firstName + " " + lastName;

A function belonging to a type is called a method. A value belonging to a type is called an attribute. There are no static

members. Instead, a function or value may be declared as a direct toplevel member of a package, or as a member of a
singleton anonymous class. This approach, along with certain other features, gives the language a more regular block
structure.

The Ceylon compiler guarantees that any attribute or value is initialized before it is used in an expression. By default, an
attribute or value may not be reassigned a new value after its initial value has been specified. Mutable attributes and vari-
able values must be explicitly declared using the variable annotation.

variable value count = 0;

Ceylon does not support function overloading. Each method of a type has a distinct name.

1.3.3. Defaulted parameters and variadic parameters

Instead of method and constructor overloading, Ceylon supports parameters with default values and variadic parameters.

void addItem(Product product, Integer quantity=1) { ... }

String join(String* strings) { ... }

Union types also help alleviate the need for overloading.

String format(String formatString, String|Float|Integer* values) => ... ;

Therefore, a single method in Ceylon may emulate the signatures of several overloaded methods in Java.

1.3.4. First-class functions and higher-order programming

Ceylon supports first-class function types and higher-order functions. A function declaration may specify a callable para-
meter that accepts references to other functions with a certain signature.

String find(Boolean where(String string)) { ... }

The argument of such a callable parameter may be either a reference to a named function declared elsewhere, or a new
function defined inline as part of the method invocation.

value result = { "C", "Java", "Ceylon" }.find((String s) => s.size>1);

The type of a function is expressed within the type system as an instantiation of the interface Callable. The parameter
types are expressed as a tuple type. So the type of the function (String s) => s.size>1 is
Callable<Boolean,[String]>, which may be abbreviated to Boolean(String).

Unlike many other languages with higher-order functions, Ceylon supports abstraction over function and tuple types of ar-
bitrary arity.

References to methods and attributes may also be used as functions.

value names = people.map(Person.name);

value values = keys.map(keyedValues.get);

1.3.5. Naming conventions, annotations, and inline documentation

Introduction

Project Ceylon: 1.2 5

The Ceylon compiler enforces the traditional Smalltalk naming convention: type names begin with an initial uppercase let-
ter—for example, Liberty or RedWine—member names and local names with an initial lowercase letter or under-
score—for example, blonde, immanentize() or boldlyGo().

These restrictions allow a much cleaner syntax for program element annotations than the syntax found in either Java or C#.
Declaration "modifiers" like shared, abstract, and variable aren't keywords in Ceylon, they're ordinary annotations.

"Base type for higher-order abstract stuff."
shared abstract class AbstractMetaThingy() { ... }

The documentation compiler reads inline documentation specified using the doc annotation.

1.3.6. Named arguments and tree-like structures

Ceylon's named argument lists provide an elegant means of initializing objects and collections. The goal of this facility is
to replace the use of XML for expressing hierarchical structures such as documents, user interfaces, configuration and seri-
alized data.

Html page = Html {
doctype = html5;
Head { title = "Ceylon: home page"; };
Body {

H2 ("Welcome to Ceylon ``language.version``!"),
P ("Now get your code on :)")

};
}

An especially important application of this facility is Ceylon's built-in support for program element annotations.

1.3.7. Modularity

Toplevel declarations are organized into packages and modules. Ceylon features language-level access control via the
shared annotation which can be used to express block-local, package-private, module-private, and public visibility for a
program element. There's no equivalent to Java's protected.

A module corresponds to a versioned packaged archive. Its module descriptor expresses its dependencies to other mod-
ules. The tooling and execution model for the language is based around modularity and module archives.

1.4. Language module

The Ceylon language module defines a set of built-in types which form the basis for several powerful features of the lan-
guage. The language itself defines extensive syntactic "sugar" that makes it easier and more convenient to interact with the
language module.

1.4.1. Operators and operator polymorphism

Ceylon features a rich set of operators, including most of the operators supported by C and Java. True operator overloading
is not supported. However, each operator is defined to act upon a certain class or interface type, allowing application of the
operator to any class which extends or satisfies that type. For example, the + operator may be applied to any class that sat-
isfies the interface Summable. This approach is called operator polymorphism.

1.4.2. Numeric and character types

Ceylon's numeric type system is much simpler than C, C# or Java, with exactly three built-in numeric types (compared to
six in Java and eleven in C#). The built-in types are classes representing integers, floating point numbers, and bytes. In-
teger and Float values are signed, with 64 bits of precision by default, and may be optimized for 32 bit architectures via
use of the small annotation. The Byte class represents 8-bit values with modular arithmetic, sidestepping the question of
whether a byte is signed or unsigned.

The module ceylon.math provides two additional numeric types representing arbitrary precision integers and arbitrary
precision decimals.

Introduction

Project Ceylon: 1.2 6

Ceylon has Character and String classes, and, unlike Java or C#, every character is a full 32-bit Unicode codepoint. Con-
veniently, a String is a List<Character>.

1.4.3. Compile-time safety for null values and flow-sensitive typing

There is no primitive null in Ceylon. The null value is an instance of the class Null. An optional type is a union type like
Null|String, which may be abbreviated to String?. An optional type is never assignable to a non-optional type except
via use of the special-purpose if (exists ...) construct. Thus, the Ceylon compiler is able to detect illegal use of a null
value at compile time. Therefore, there is no equivalent to Java's NullPointerException in Ceylon.

Similarly, there are no C-style typecasts in Ceylon. Instead, the if (is ...) and case (is ...) constructs may be
used to test and narrow the type of an object reference in one step, without risk of a ClassCastException. This facility is
called flow-sensitive typing.

String name(Organization|Person entity) {
switch (entity)
case (is Organization) {

return entity.tradeName else entity.legalName;
}
case (is Person) {

return entity.nickName else entity.firstName;
}

}

Alternatively, type assertions, written assert (is ...) or assert (exists ...) may be used to narrow the type of a
reference.

value arg = process.arguments[0];
"must specify an amount"
assert (exists arg);
"not a legal positive integer amount"
assert (exists amount = parseInteger(arg), amount>0);

The combination of case (is ...) with sum types amounts to a kind of language-level support for the visitor pattern.

1.4.4. Streams and comprehensions

The interface Iterable represents a stream of values, which might be evaluated lazily. This interface is of central import-
ance in the language module, and so the language provides a syntactic abbreviation for the type of an iterable object. The
abbreviation {String*} means Iterable<String>. There is a convenient syntax for instantiating an iterable object, given
a list of values:

{String*} words = {"hello", "world", "goodbye"};

A nonempty iterable is an iterable object which always produces at least one value. A nonempty iterabe type is written
{String+}. Distinguishing nonempty streams of values lets us correctly express the type of functions like max():

{Float+} oneOrMore = ;
{Float*} zeroOrMore = ;
Float maxOfOneOrMore = max(oneOrMore); //never null
Float? maxOfZeroOrMore = max(zeroOrMore); //might be null

Comprehensions are an expressive syntax for filtering and transforming streams of values. For example, they may be used
when instantiating an iterable object or collection:

value adults = { for (p in people) if (p.age>18) p.name };

value peopleByName = HashMap { for (p in people) p.name->p };

Comprehensions are evaluated lazily.

1.4.5. Sequences and tuples

Sequences are Ceylon's version of arrays. However, the Sequential interface does not provide operations for mutating the
elements of the sequence—sequences are considered immutable. Because this interface is so useful, a type like Sequen-

Introduction

Project Ceylon: 1.2 7

tial<String> may be abbreviated to [String*], or, for the sake of tradition, to String[].

A nonempty sequence is a kind of sequence which always has at least one element. A nonempty sequence type is written
[String+]. The special-purpose if (nonempty ...) construct narrows a sequence type to a nonempty sequence type.

Tuples are a kind of sequence where the type of each element is encoded into the static type of the tuple. Tuple is just an
ordinary class in Ceylon, but the language lets us write down tuple types using a streamlined syntax. For example,
[Float,Float] is a pair of Floats. There's also a convenient syntax for instantiating tuples and accessing their elements.

[Float,Float] origin = [0.0, 0.0];
Float x = origin[0];
Float y = origin[1];
Null z = origin[2]; //only two elements!

Tuples and nonempty sequences support pattern-based destructuring.

value [x, y] = origin;

Introduction

Project Ceylon: 1.2 8

Chapter 2. Lexical structure

Every Ceylon source file is a sequence of Unicode characters. Lexical analysis of the character stream, according to the
grammar specified in this chapter, results in a stream of tokens. These tokens form the input of the parser grammar defined
in the later chapters of this specification. The Ceylon lexer is able to completely tokenize a character stream in a single
pass.

2.1. Whitespace

Whitespace is composed of strings of Unicode SPACE, CHARACTER TABULATION, FORM FEED (FF), LINE FEED (LF) and
CARRIAGE RETURN (CR) characters.

Whitespace: " " | Tab | Formfeed | Newline | CarriageReturn

Tab: "\{CHARACTER TABULATION}"

Formfeed: "\{FORM FEED (FF)}"

Newline: "\{LINE FEED (LF)}"

CarriageReturn: "\{CARRIAGE RETURN (CR)}"

Outside of a comment, string literal, or single quoted literal, whitespace acts as a token separator and is immediately dis-
carded by the lexer. Whitespace is not used as a statement separator.

Source text is divided into lines by line-terminating character sequences. The following Unicode character sequences ter-
minate a line:

• LINE FEED (LF),

• CARRIAGE RETURN (CR), and

• CARRIAGE RETURN (CR) followed by LINE FEED (LF).

2.2. Comments

There are two kinds of comments:

• a multiline comment begins with /* and extends until */, and

• an end-of-line comment begins with // or #! and extends until the next line terminating character sequence.

Both kinds of comments can be nested.

LineComment: ("//"|"#!") ~(Newline | CarriageReturn)* (CarriageReturn Newline | CarriageReturn | Newline)?

MultilineComment: "/*" (MultilineCommentCharacter | MultilineComment)* "*/"

MultilineCommentCharacter: ~("/"|"*") | ("/" ~"*") => "/" | ("*" ~"/") => "*"

The following examples are legal comments:

//this comment stops at the end of the line

/*
but this is a comment that spans
multiple lines

*/

#!/usr/bin/ceylon

Project Ceylon: 1.2 9

Comments are treated as whitespace by both the compiler and documentation compiler. Comments may act as token separ-
ators, but their content is immediately discarded by the lexer and they are not visible to the parser.

2.3. Identifiers and keywords

Identifiers may contain letters, digits and underscores.

LowercaseCharacter: LowercaseLetter | "_"

UppercaseCharacter: UppercaseLetter

IdentifierCharacter: LowercaseCharacter | UppercaseCharacter | Number

The lexer classifies Unicode uppercase letters, lowercase letters, and numeric characters depending on the general category
of the character as defined by the Unicode standard.

• A LowercaseLetter is any character whose general category is Ll or any character whose general category is Lo or Lm
which has the property Other_Lowercase.

• An UppercaseLetter is any character whose general category is Lu or Lt, or any character whose general category is
Lo or Lm which does not have the property Other_Lowercase.

• A Number is any character whose general category is Nd, Nl, or No.

All identifiers are case sensitive: Person and person are two different legal identifiers.

The lexer distinguishes identifiers which begin with an initial uppercase character from identifiers which begin with an ini-
tial lowercase character or underscore. Additionally, an identifier may be qualified using the prefix \i or \I to disambigu-
ate it from a reserved word or to explicitly specify whether it should be considered an initial uppercase or initial lowercase
identifier.

LIdentifier: LowercaseCharacter IdentifierCharacter* | "\i" IdentifierCharacter+

UIdentifier: UppercaseCharacter IdentifierCharacter* | "\I" IdentifierCharacter+

The following examples are legal identifiers:

Person

name

personName

_id

x2

\I_id

\Iobject

\iObject

\iclass

The prefix \I or \i is not considered part of the identifier name. Therefore, \iperson is just an initial lowercase identifier
named person and \Iperson is an initial uppercase identifier named person.

The following reserved words are not legal identifier names unless they appear escaped using \i or \I:

Lexical structure

Project Ceylon: 1.2 10

assembly module package import alias class interface object given value assign void function new of

extends satisfies abstracts in out return break continue throw assert dynamic if else switch case for

while try catch finally then let this outer super is exists nonempty

Note: assembly and abstracts are reserved for possible use in a future release of the language, for declaration of assem-
blies and lower bound type constraints respectively.

2.4. Literals

A literal is a single token that represents a Unicode character, a character string, or a numeric value.

2.4.1. Numeric literals

An integer literal may be expressed in decimal, hexadecimal, or binary notation:

IntegerLiteral: DecimalLiteral | HexLiteral | BinLiteral

A decimal literal has a list of digits and an optional magnitude:

DecimalLiteral: Digits Magnitude?

Hexadecimal literals are prefixed by #:

HexLiteral: "#" HexDigits

Binary literals are prefixed by $:

BinLiteral: "$" BinDigits

A floating point literal is distinguished by the presence of a decimal point or fractional magnitude:

FloatLiteral: NormalFloatLiteral | ShortcutFloatLiteral

Most floating point literals have a list of digits including a decimal point, and an optional exponent or magnitude.

NormalFloatLiteral: Digits "." FractionalDigits (Exponent | Magnitude | FractionalMagnitude)?

The decimal point is optional if a fractional magitude is specified.

ShortcutFloatLiteral: Digits FractionalMagnitude

Decimal digits may be separated into groups of three using an underscore.

Digits: Digit+ | Digit{1..3} ("_" Digit{3})+

FractionalDigits: Digit+ | (Digit{3} "_")+ Digit{1..3}

Hexadecimal or binary digits may be separated into groups of four using an underscore. Hexadecimal digits may even be
separated into groups of two.

HexDigits: HexDigit+ | HexDigit{1..4} ("_" HexDigit{4})+ | HexDigit{1..2} ("_" HexDigit{2})+

BinDigits: BinDigit+ | BinDigit{1..4} ("_" Digit{4})+

A digit is a decimal, hexadecimal, or binary digit.

Digit: "0".."9"

HexDigit: "0".."9" | "A".."F" | "a".."f"

BinDigit: "0"|"1"

Lexical structure

Project Ceylon: 1.2 11

A floating point literal may include either an exponent (for scientific notation) or a magnitude (an SI unit prefix). A decim-
al integer literal may include a magnitude.

Exponent: ("E"|"e") ("+"|"-")? Digit+

Magnitude: "k" | "M" | "G" | "T" | "P"

FractionalMagnitude: "m" | "u" | "n" | "p" | "f"

The magnitude of a numeric literal is interpreted as follows:

• k means e+3,

• M means e+6,

• G means e+9,

• T means e+12,

• P means e+15,

• m means e-3,

• u means e-6,

• n means e-9,

• p means e-12, and

• f means e-15.

The following examples are legal numeric literals:

69

6.9

0.999e-10

1.0E2

10000

1_000_000

12_345.678_9

1.5k

12M

2.34p

5u

$1010_0101

#D00D

#FF_FF_FF

Lexical structure

Project Ceylon: 1.2 12

The following are not valid numeric literals:

.33 //Error: floating point literals may not begin with a decimal point

1. //Error: floating point literals may not end with a decimal point

99E+3 //Error: floating point literals with an exponent must contain a decimal point

12_34 //Error: decimal digit groups must be of length three

#FF.00 //Error: floating point numbers may not be expressed in hexadecimal notation

2.4.2. Character literals

A single character literal consists of a Unicode character, inside single quotes.

CharacterLiteral: "'" Character "'"

Character: ~("'" | "\") | EscapeSequence

A character may be identified by an escape sequence. Every escape sequence begins with a backslash. An escape sequence
is replaced by its corresponding Unicode character during lexical analysis.

EscapeSequence: "\" (SingleCharacterEscape | "{" CharacterCode "}")

SingleCharacterEscape: "b" | "t" | "n" | "f" | "r" | "e" | "\" | """ | "'" | "`" | "0"

The single-character escape sequences have their traditional interpretations as Unicode characters:

• \b means BACKSPACE,

• \t means CHARACTER TABULATION,

• \n means LINE FEED (LF),

• \f means FORM FEED (FF),

• \r means CARRIAGE RETURN (CR),

• \e means ESCAPE,

• \\, \`, \', and \" mean REVERSE SOLIDUS, GRAVE ACCENT, APOSTROPHE, and QUOTATION MARK, respectively, and, finally

• \0 means NULL.

A Unicode codepoint escape is a two-, four-, or six-digit hexadecimal literal representing an integer in the range 0 to
10FFFF, or a Unicode character name, surrounded by braces, and means the Unicode character with the specified code-
point or character name.

CharacterCode: "#" (HexDigit{2} | HexDigit{4} | HexDigit{6}) | UnicodeCharacterName

Legal Unicode character names are defined by the Unicode specification.

The following are legal character literals:

'A'

'#'

' '

'\n'

Lexical structure

Project Ceylon: 1.2 13

'\{#212B}'

'\{ALCHEMICAL SYMBOL FOR GOLD}'

2.4.3. String literals

A character string literal is a sequence of Unicode characters, inside double quotes.

StringLiteral: """ StringCharacter* """

StringCharacter: ~("\" | """ | "`") | "`" ~"`" | EscapeSequence | EscapedBreak

A string literal may contain escape sequences. An escape sequence is replaced by its corresponding Unicode character dur-
ing lexical analysis.

A line-terminating character sequence may be escaped with a backslash, in which case the escaped line termination is re-
moved from the string literal during lexical analysis.

EscapedBreak: "\" (CarriageReturn Newline | CarriageReturn | Newline)

A sequence of two backticks is used to delimit an interpolated expression embedded in a string template.

StringStart: """ StringCharacter* "``"

StringMid: "``" StringCharacter* "``"

StringEnd: "``" StringCharacter* """

A verbatim string is a character sequence delimited by a sequence of three double quotes. Verbatim strings do not contain
escape sequences or interpolated expressions, so every character occurring inside the verbatim string is interpreted liter-
ally.

VerbatimStringLiteral: """"" VerbatimCharacter* """""

VerbatimCharacter: ~""" | """ ~""" | """ """ ~"""

The following are legal strings:

"Hello!"

"\{#00E5}ngstr\{#00F6}ms"

" \t\n\f\r,;:"

"\{POLICE CAR} \{TROLLEYBUS} \{WOMAN WITH BUNNY EARS}"

"""This program prints "hello world" to the console."""

The column in which the first character of a string literal occurs, excluding the opening quote characters, is called the ini-
tial column of the string literal. Every following line of a multiline string literal must contain whitespace up to the initial
column. That is, if the string contents begin at the nth character in a line of text, the following lines must start with n

whitespace characters. This required whitespace is removed from the string literal during lexical analysis.

2.5. Operators and delimiters

The following character sequences are operators and/or punctuation:

, ; ... { } () [] ` ? . ?. *. = => + - * / % ^ ** ++ -- .. : -> ! && || ~ & | === == != < > <= >=

<=> += -= /= *= %= |= &= ~= ||= &&=

Lexical structure

Project Ceylon: 1.2 14

Certain symbols serve dual or multiple purposes in the grammar.

Lexical structure

Project Ceylon: 1.2 15

Chapter 3. Type system

Every value in a Ceylon program is an instance of a type that can be expressed within the Ceylon language as a class. The
language does not define any primitive or compound types that cannot, in principle, be expressed within the language it-
self.

A class, fully defined in §4.5 Classes, is a recipe for producing new values, called instances of the class (or simply
objects), and defines the operations and attributes of the resulting values. A class instance may hold references to other ob-
jects, and has an identity distinct from these references.

Each class declaration defines a type. However, not all types are classes. It is often advantageous to write generic code that
abstracts the concrete class of a value. This technique is called polymorphism. Ceylon features two different kinds of poly-
morphism:

• subtype polymorphism, where a subtype B inherits a supertype A, and

• parametric polymorphism, where a type definition A<T> is parameterized by a generic type parameter T.

Ceylon, like Java and many other object-oriented languages, features a single inheritance model for classes. A class may
directly inherit at most one other class, and all classes eventually inherit, directly or indirectly, the class Anything defined
in the module ceylon.language, which acts as the root of the class hierarchy.

A truly hierarchical type system is much too restrictive for more abstract programming tasks. Therefore, in addition to
classes, Ceylon recognizes the following kinds of type:

• An interface, defined in §4.4 Interfaces, is an abstract type schema that cannot itself be directly instantiated. An inter-
face may define concrete members, but these members may not hold references to other objects. A class may inherit
one or more interfaces. An instance of a class that inherits an interface is also considered an instance of the interface.

• A generic type parameter, defined in §3.5 Generic type parameters, is considered a type within the declaration that it
parameterizes. In fact, it is an abstraction over many types: it generalizes the declaration to all types which could be as-
signed to the parameter.

• An applied type, defined in §3.6 Generic type arguments, is formed by specifying arguments for the generic type para-
meters of a parameterized type declaration, and is called an instantiation of the parameterized type declaration.

• A union type, defined in §3.2.3 Union types, is a type to which each of an enumerated list of types is assignable.

• An intersection type, defined in §3.2.4 Intersection types, is a type which is assignable to each of an enumerated list of
types.

Although we often use the term parameterized type or even generic type to refer to a parameterized type definition, it is
important to keep in mind that a parameterized type definition is not itself a type. Rather, it is a type constructor, a func-
tion that maps types to types. Given a list of type arguments, the function yields an applied type.

In light of the fact that Ceylon makes it so easy to construct new types from existing types without the use of inheritance,
by forming unions, intersections, and applied types, it's often useful to assign a name to such a type.

• A type alias, defined in §4.6 Type aliases, §4.5.9 Class aliases, and §4.4.5 Interface aliases, is a synonym for an ex-
pression involving other types or generic types. A type alias may itself be generic.

The Ceylon type system is much more complete than most other object oriented languages. In Ceylon, it's possible to an-
swer questions that might at first sound almost nonsensical if you're used to languages with more traditional type systems.
For example:

• What is the type of a variable that may or may not hold a value of type Element?

• What is the type of a parameter that accepts either an Integer or a Float?

• What is the type of a parameter that accepts values which are instances of both Persistent and Printable?

• What is the type of a function which accepts any non-null value and returns a String?

Project Ceylon: 1.2 16

• What is the type of a function that accepts one or more Strings and returns an iterable object producing at least one
String?

• What is the type of a sequence consisting of a String followed by two Floats?

• What is the type of a list with no elements?

The answers, as we shall see, are: Element?, Integer|Float, Persistent&Printable, String(Object),
{String+}(String+), [String,Float,Float], and List<Nothing>.

It's important that there is always a unique "best" answer to questions like these in Ceylon. The "best" answer is called the
principal type of an expression. Every other type to which the expression is assignable is a supertype of the principal type.

Thus, every legal Ceylon expression has a unique, well-defined type, representable within the type system, without refer-
ence to how the expression is used or to what type it is assigned. This is the case even when type inference or type argu-
ment inference comes into play.

Neither this specification nor the internal implementation of the Ceylon compiler itself use any kind of "non-denotable"
types. Every type mentioned here or inferred internally by the compiler has a representation within the language itself.
Thus, the programmer is never exposed to confusing error messages referring to mysterious types that are not part of the
syntax of the language.

3.1. Identifier naming

The Ceylon compiler enforces identifier naming conventions. Types must be named with an initial uppercase letter. Val-
ues, functions, and constructors must be named with an initial lowercase letter or underscore. The grammar for identifiers
is defined by §2.3 Identifiers and keywords.

TypeName: UIdentifier

MemberName: LIdentifier

A package or module name is a sequence of identifiers, each with an initial lowercase letter or underscore.

PackageName: LIdentifier

Ceylon defines three identifier namespaces:

• classes, interfaces, type aliases, and type parameters share a single namespace,

• functions and values, including parameters, and constructors share a single namespace, and

• packages and modules have their own dedicated namespace.

The Ceylon parser is able to unambiguously identify which namespace an identifier belongs to.

An identifier that begins with an initial lowercase letter may be forced into the namespace of types by prefixing the identi-
fier \I. An identifier that begins with an initial uppercase letter may be forced into the namespace of methods and attrib-
utes by prefixing the identifier \i. A keyword may be used as an identifier by prefixing the keyword with either \i or \I.
This allows interoperation with other languages like Java and JavaScript which do not enforce these naming conventions.

3.2. Types

A type or type schema is a name (an initial uppercase identifier) and an optional list of type parameters, with a set of:

• value schemas,

• function schemas, and

• class schemas.

Type system

Project Ceylon: 1.2 17

The value, function, and class schemas are called the members of the type.

Speaking formally:

• A value schema is a name (an initial lowercase identifier) with a type and mutability.

• A function schema is a name (an initial lowercase identifier) and an optional list of type parameters, with a type (often
called the return type) and a sequence of one or more parameter lists.

• A class schema is a type schema with either one parameter list, or a list of constructor schemas.

• A callable constructor schema is a name (an initial lowercase identifier) with exactly one parameter list.

• A value constructor schema is a name (an initial lowercase identifier).

• A parameter list is a list of names (initial lowercase identifiers) with types. The signature of a parameter list is formed
by discarding the names, leaving the list of types.

Speaking slightly less formally, we usually refer to an attribute, method, or member class of a type, meaning a value
schema, function schema, or class schema that is a member of the type.

A function or value schema may occur outside of a type schema. If it occurs directly in a compilation unit, we often call it
a toplevel function or toplevel value.

A value schema, function schema, or parameter list with a missing type or types may be defined. Any such schema, or
parameter list with a missing type is called partially typed.

Two signatures are considered identical if they have exactly the same types, at exactly the same positions, and missing
types at exactly the same positions.

3.2.1. Member distinctness

Overloading is illegal in Ceylon. A type may not have:

• two attributes with the same name,

• a method and an attribute with the same name,

• two methods with the same name, or

• two member classes with the same name.

Note: the Ceylon compiler itself is able to represent type schemas with overloaded members and reason about overload-
ing, and does so when compiling code that calls native Java types. However, this behavior is outside the scope of this spe-
cification.

3.2.2. Subtyping

A type may be a subtype of another type. Subtyping obeys the following rules:

• Identity: X is a subtype of X.

• Transitivity: if X is a subtype of Y and Y is a subtype of Z then X is a subtype of Z.

• Noncircularity: if X is a subtype of Y and Y is a subtype of X then Y and X are the same type.

• Single root: all types are subtypes of the class Anything defined in the module ceylon.language.

Also, every interface type is a subtype of the class Object defined in ceylon.language.

If X is a subtype of Y, then:

• For each non-variable attribute of Y, X has an attribute with the same name, whose type is assignable to the type of the

Type system

Project Ceylon: 1.2 18

attribute of Y.

• For each variable attribute of Y, X has a variable attribute with the same name and the same type.

• For each method of Y, X has a method with the same name, with the same number of parameter lists, with the same sig-
natures, and whose return type is assignable to the return type of the method of Y.

• For each member class of Y, X has a member class of the same name, with a parameter list with the same signature, that
is a subtype of the member class of Y.

Furthermore, we say that X is assignable to Y.

3.2.3. Union types

For any types X and Y, the union, or disjunction, X|Y, of the types may be formed. A union type is a supertype of both of
the given types X and Y, and an instance of either type is an instance of the union type.

Note: the type expression X|Y is pronounced “x or y”.

The union type constructor | is associative, so the union of three types, X, Y, and Z, may be written X|Y|Z.

UnionType: IntersectionType ("|" IntersectionType)*

If X and Y are both subtypes of a third type Z, then X|Y inherits all members of Z.

void write(String|Integer|Float printable) { ... }

Union types satisfy the following rules, for any types X, Y, and Z:

• Commutativity: X|Y is the same type as Y|X.

• Associativity: X|(Y|Z) is the same type as (X|Y)|Z.

• Simplification: if X is a subtype of Y, then X|Y is the same type as Y.

• Subtypes: X is a subtype of X|Y.

• Supertypes: if both X and Y are subtypes of Z, then X|Y is also a subtype of Z.

The following results follow from these rules:

• X|Nothing is the same type as X for any type X, and

• X|Anything is the same type as Anything for any type X.

Finally:

• If X<T> is covariant in the type parameter T, then X<U>|X<V> is a subtype of X<U|V> for any types U and V that satisfy
the type constraints on T.

• If X<T> is contravariant in the type parameter T, then X<U>|X<V> is a subtype of X<U&V> for any types U and V that satis-
fy the type constraints on T.

3.2.4. Intersection types

For any types X and Y, the intersection, or conjunction, X&Y, of the types may be formed. An intersection type is a subtype
of both of the given types X and Y, and any object which is an instance of both types is an instance of the intersection type.

Note: the type expression X&Y is pronounced “x and y”.

The intersection type constructor & is associative, so the intersection of three types, X, Y, and Z, may be written X&Y&Z.

IntersectionType: PrimaryType ("&" PrimaryType)*

Type system

Project Ceylon: 1.2 19

The intersection X&Y inherits all members of both X and Y.

void store(Persistent&Printable&Identifiable storable) { ... }

Intersection types satisfy the following rules, for any types X, Y, and Z:

• Commutativity: X&Y is the same type as Y&X.

• Associativity: X&(Y&Z) is the same type as (X&Y)&Z.

• Simplification: if X is a subtype of Y, then X&Y is the same type as X.

• Supertypes: X is a supertype of X&Y.

• Subtypes: if both X and Y are supertypes of Z, then X&Y is also a supertype of Z.

• Distributivity over union: X&(Y|Z) is the same type as (X&Y)|(X&Z).

The following results follow from these rules:

• X&Nothing is the same type as Nothing for any type X, and

• X&Anything is the same type as X for any type X.

Finally:

• If X<T> is covariant in the type parameter T, then X<U>&X<V> is a supertype of X<U&V> for any types U and V that satisfy
the type constraints on T.

• If X<T> is contravariant in the type parameter T, then X<U>&X<V> is a supertype of X<U|V> for any types U and V that sat-
isfy the type constraints on T.

3.2.5. The bottom type

The special type Nothing, sometimes called the bottom type, represents:

• the intersection of all types, or, equivalently

• the empty set.

Nothing is assignable to all other types, but has no instances.

The type schema for Nothing is empty, that is, it is considered to have no members.

Nothing is considered to belong to the module ceylon.language. However, it cannot be defined within the language.

Note: an expression of type Nothing results in a compiler warning.

Because of the restrictions imposed by Ceylon's mixin inheritance model:

• If X and Y are classes, and X is not a subclass of Y, and Y is not a subclass of X, then the intersection type X&Y is equival-
ent to Nothing.

• If X is an interface, the intersection type X&Null is equivalent to Nothing.

• If X is an interface, and Y is a final class, and Y is not a subtype of X, then the intersection type X&Y is equivalent to
Nothing.

• If X<T> is invariant in its type parameter T, and the distinct types A and B do not involve type parameters, then
X<A>&X is equivalent to Nothing.

• If X is a subtype of a type A and Y is a subtype of a type B, where A and B are distinct cases of an enumerated type, then
the intersection type X&Y is equivalent to Nothing.

Type system

Project Ceylon: 1.2 20

Furthermore, as a special case,

• Sequence<E> is equivalent to Nothing if E is equivalent to Nothing, and

• Tuple<E,F,R> is equivalent to Nothing if any of E, F, or R is equivalent to Nothing.

Note: the soundness of these rules is guaranteed by the implementations of the sealed types Sequence and Tuple in the
module ceylon.language.

3.2.6. Principal typing

An expression, as defined in Chapter 6, Expressions, occurring at a certain location, may be assignable to a type. In this
case, every evaluation of the expression at runtime produces an instance of a class that is a subtype of the type, or results in
a thrown exception, as defined in Chapter 8, Execution.

Given an expression occurring at a certain location, a type T is the principal type of the expression if, given any type U to
which the expression is assignable, T is a subtype of U. Thus, the principal type is the "most precise" type for the expres-
sion. The type system guarantees that every expression has a principal type. Thus, we refer uniquely to the type of an ex-
pression, meaning its principal type at the location at which it occurs.

3.2.7. Type expressions

Function and value declarations usually declare a type, by specifying a type expression.

Type: UnionType | EntryType

Type expressions are formed by combining types using union, intersection, and type abbreviations.

Type expressions support grouping using angle brackets:

GroupedType: "<" Type ">"

Applied types are identified by the name of the type (a class, interface, type alias, or type parameter), together with a list of
type arguments if the type declaration is generic.

TypeNameWithArguments: TypeName TypeArguments?

Type names are resolved to type declarations according to §5.1.7 Unqualified reference resolution and §5.1.8 Qualified
reference resolution.

If the type is a class, interface, or type alias nested inside a containing class or interface, the type must be fully qualified by
its containing types, except when used inside the body of a containing type.

BaseType: PackageQualifier? TypeNameWithArguments | GroupedType

QualifiedType: BaseType ("." TypeNameWithArguments)*

If a type declaration is generic, a type argument list must be specified. If a type declaration is not generic, no type argu-
ment list may be specified.

A base type may be qualified by the package keyword, allowing disambiguation of the type name, as defined in §5.1.7 Un-
qualified reference resolution.

PackageQualifier: "package" "."

Note: the name of a type may not be qualified by its package name. Alias imports, as defined in §4.2.4 Alias imports may
be used to disambiguate type names.

BufferedReader.Buffer

Entry<Integer,Element>

Type system

Project Ceylon: 1.2 21

3.2.8. Type abbreviations

Certain important types may be written using an abbreviated syntax.

PrimaryType: AtomicType | OptionalType | SequenceType | CallableType

AtomicType: QualifiedType | EmptyType | TupleType | IterableType

First, there are postfix-style abbreviations for optional types and sequence types.

OptionalType: PrimaryType "?"

SequenceType: PrimaryType "[" "]"

For any type X:

• X? means Null|X, and

• X[] means Sequential<X>.

Note: the type expression X? is pronounced as “maybe x”, and X[] as “sequence of x”.

Next, there are type abbreviations for callable types which represent the types of functions.

CallableType: PrimaryType "(" (TypeList? | SpreadType) ")"

TypeList: (DefaultedType ",")* (DefaultedType | VariadicType)

DefaultedType: Type "="?

VariadicType: UnionType ("*" | "+")

SpreadType: "*" UnionType

For any type X:

• X(Y,Z) means Callable<X,[Y,Z]> where Y,Z is a list of types of any length, and

• X(*Y) means Callable<X,Y> for any subtype Y of Sequential<Anything>.

More precisely, the type meant by a callable type abbreviation is Callable<X,T> where X is the type outside the paren-
theses in the the callable type abbreviation, and T is the tuple type formed by the types listed inside the parentheses.

Next, abbreviations for iterable types are written using braces.

IterableType: "{" UnionType ("*"|"+") "}"

For any type X:

• {X*} means Iterable<X,Null>, and

• {X+} means Iterable<X,Nothing>.

Note: the type expression {X*} is pronounced as “stream of x”, and {X+} as “nonempty stream of x”.

Next, abbreviations for sequence types and tuple types may be written using brackets.

EmptyType: "[" "]"

TupleType: "[" TypeList "]" | PrimaryType "[" DecimalLiteral "]"

Type system

Project Ceylon: 1.2 22

• [] means Empty,

• [X] means Tuple<X,X,[]> for any type X,

• [X=] means []|[X] for any type X,

• [X*] means Sequential<X> for any type X,

• [X+] means Sequence<X> for any type X,

• [X,Y] means Tuple<X|Y,X,[Y]> for any types X,Y,

• [X,Y=] means Tuple<X|Y,X,[Y=]> for any types X,Y,

• [X,Y*] means Tuple<X|Y,X,[Y*]> for any types X,Y,

• [X,Y+] means Tuple<X|Y,X,[Y+]> for any types X,Y, and, finally,

• X[1] means [X], for any type X, and X[n] means Tuple<X,X,X[n-1]> for any type X and positive integer n.

More precisely:

• A tuple type abbreviation of form [X, ...] means the type Tuple<X|Y,X,T> where T is the type meant by the type
abbreviation formed by removing the first element type X from the list of types in the original tuple type abbreviation,
and T has the principal instantiation Y[], as defined in §3.7 Principal instantiations and polymorphism.

• A tuple type abbreviation of form [X=, ...] means the type Empty|T where T is the type meant by the tuple type ab-
breviation [X, ...], formed by removing the = from the first element type X= of the list of types in the original tuple
type abbreviation.

In a tuple type or callable type expression:

• an defaulted element is indicated with a postfix = or *, and

• a required element is indicated with a postfix + or no special marker.

In a tuple type or callable type expression, every defaulted element must occur after every required element.

Finally, an entry type may be abbreviated using an arrow.

EntryType: UnionType "->" UnionType

• X->Y means Entry<X,Y>, for any types X, Y.

Note: the abbreviations T[] and [T*] are synonyms. The syntax T[] is supported for reasons of nostalgia.

Abbreviations may be combined:

String?[] words = { "hello", "world", null };
String? firstWord = words[0];

String->[Integer,Integer] onetwo = "onetwo"->[1, 2];

[Float+](Float x, Float[] xs) add = (Float x, Float[] xs) => [x, *xs];

When a type appears in a value expression, these abbreviations cannot be used (they cannot be disambiguated from operat-
or expressions).

3.2.9. Type inference

Certain declarations which usually require an explicit type may omit the type, forcing the compiler to infer it, by specify-
ing the keyword value, as defined in §4.8.4 Value type inference, or function, as defined in §4.7.4 Function return type
inference, where the type usually appears.

value names = people*.name;

Type system

Project Ceylon: 1.2 23

function parse(String text) => text.split(" .!?,:;()\n\f\r\t".contains);

Type inference is only allowed for declarations which are referred to only by statements and declarations that occur within
the lexical scope of the declaration, as specified by §5.1.6 Type inference and block structure. A value or function de-
claration may not:

• be annotated shared, as defined in §5.1.3 Visibility,

• occur as a toplevel declaration in a compilation unit, as defined in §4.1.1 Toplevel and nested declarations, or

• be referred to by statements or declarations that occur earlier in the body containing of the declaration, as defined in
§5.1 Block structure and references.

Nor may a parameter or forward-declared value, as defined in §4.8.5 Forward declaration of values, or of a forward-de-
clared function, as defined in §4.7.5 Forward declaration of functions, have an inferred type.

These restrictions allow the compiler to infer undeclared types in a single pass of the code.

Note: in future releases of the language, the inferred type will be context-dependent, that is, in program elements immedi-
ately following an assignment or specification, the inferred type will be the type just assigned. When conditional execution
results in definite assignment, the inferred type will be the union of the conditionally assigned types. This will allow us to
to relax the restriction that forward-declared functions and values can't have their type inferred. For example:

value one;
if (float) {

one = 1.0;
Float float = one;

}
else {

one = 1;
Integer int = one;

}
Float|Integer num = one;

An inferred type never involves an anonymous class, as defined in §4.5.7 Anonymous classes. When an inferred type
would involve an anonymous class type, the anonymous class is replaced by the intersection of the class type it extends
with all interface types it satisfies.

TODO: properly define how expressions with no type occurring in a dynamic block affect type inference.

3.2.10. Type alias elimination

A type alias is a synonym for another type. A generic type alias is a type constructor that produces a type alias, given a list
of type arguments.

Every type alias must be reducible to an equivalent type that does not involve any type aliases by recursive replacement of
type aliases with the types they alias. Thus, circular type alias definitions, as in the following example, are illegal:

alias X => List<Y>; //error: circular type alias definition
alias Y => List<X>; //error: circular type alias definition

Replacement of type aliases with the types they alias occurs at compile time, so type aliases are not reified types, as spe-
cified in §8.1.2 Type argument reification.

3.3. Inheritance

Inheritance is a static relationship between classes, interfaces, and type parameters:

• a class may extend another class, as defined by §4.5.4 Class inheritance,

• a class may satisfy one or more interfaces, as defined by §4.5.4 Class inheritance,

• an interface may satisfy one or more other interfaces, as defined by §4.4.2 Interface inheritance, or

Type system

Project Ceylon: 1.2 24

• a type parameter may satisfy a class and/or one or more interfaces or type parameters, as defined by §3.5.3 Generic
type constraints.

We say that a type declaration X inherits a type declaration Y if X extends or satisfies Y, or if a third type declaration Z in-
herits Y and X extends or satisfies Z.

Inheritance relationships may not produce cycles, since that would violate the noncircularity rule for subtyping. Thus, a
class, interface, or type parameter may not, directly or indirectly, inherit itself.

When a type declaration extends or satisfies a parameterized type declaration, it must specify type arguments for the type
parameters of the generic declaration. Thus, whenever a type declaration inherits a parameterized type declaration, it also
inherits an instantiation of the parameterized type declaration.

Note: when a type declaration specifies a relationship to other types, Ceylon visually distinguishes between a list of types
which conceptually represents a combination of (intersection of) the types, and a list of types which represents a choice
between (union of) the types. For example, when a class C satisfies multiple interfaces, they are written as X&Y&Z. On the
other hand, the cases of an enumerated class E are written as X|Y|Z. This syntax emphasizes that C is also a subtype of the
intersection type X&Y&Z, and that E may be narrowed to the union type X|Y|Z using a switch statement or the of operator.

3.3.1. Inheritance and subtyping

Inheritance relationships between classes, interfaces, and type parameters result in subtyping relationships between types.

• If a type declaration X with no type parameters inherits a type Y, then X is a subtype of Y.

• If a generic type X inherits a type Y, which might involve the type parameters of X, then for any instantiation U of X we
can construct a type V by, for every type parameter T of X, substituting the corresponding type argument of T given in U

everywhere T occurs in Y, and then U is a subtype of V.

3.3.2. Extension

A class may extend another class, in which case the first class is a subtype of the second class and inherits its members. A
class which extends another class may have a constructor, as defined in §4.9 Constructors, which delegates to a callable
constructor of the second class. Extension and constructor delegation is specified using the extends clause.

The extends clause must specify exactly one class or constructor.

ExtendedType: "extends" (Extension | Construction)

An extends clause of a class or constructor has either:

• a reference to a superclass, followed by an optional positional argument list, as defined in §6.6.7 Positional argument
lists, or

• a reference to a superclass constructor, always followed by a positional argument list.

In the case that the extends clause refers to a constructor, the superclass is taken to be the class to which the constructor
belongs.

Extension: (BaseExtension | SuperExtension) PositionalArguments?

Construction: (BaseConstruction | SuperConstruction) PositionalArguments

The extends clause may not refer to a partial constructor of the superclass, nor to a value constructor of the superclass.

BaseExtension: PackageQualifier? TypeNameWithArguments

SuperExtension: SuperQualifier TypeNameWithArguments

BaseConstruction: (PackageQualifier? TypeNameWithArguments ".")? MemberNameWithArguments

Type system

Project Ceylon: 1.2 25

SuperConstruction: SuperQualifier MemberNameWithArguments

SuperQualifier: "super" "."

The specification of the superclass or superclass constructor is treated as a value expression, not as a type expression.

• If the qualifier super occurs, the specification is treated as a member expression, as defined by §6.5.2 Member expres-
sions, where the qualifier super is treated according to §6.3.3 super.

• If a qualifying type occurs, the specification is treated as a constructor expression, as defined by §6.5.3 Constructor ex-
pressions.

• Otherwise, if no qualifier occurs, the specification is treated as a base expression, as defined by §6.5.1 Base expres-
sions.

The type of the value expression is the inherited type.

The specification of the superclass or superclass constructor may have type arguments, and, additionally, the extends
clause may have a positional argument list:

• If the superclass is a parameterized type, the extends clause must also explicitly specify type arguments, and the res-
ulting applied type is inherited.

• If the extends clause belongs to a constructor or to a class with an initializer parameter list, the extends clause must
specify arguments for the initializer parameters of the superclass or parameters of the superclass constructor.

• If the extends clause belongs to a class with no initializer parameter list, the extends clause may not specify argu-
ments for the initializer parameters of the superclass, and the extends clause may not refer to a constructor.

The type arguments may not be inferred from the positional arguments.

A type argument occurring in the extends clause may not involve variance annotations in or out, defined below in §3.6.1
Type arguments and variance.

extends Singleton<String>("")

extends Person(name, org)

extends withName(name)

A member class annotated actual may use the qualifier super in the extends clause to refer to the member class it refines.
When the qualifier super appears, the following class name refers to a member class of the superclass of the class that
contains the member class annotated actual.

extends super.Buffer()

The root class Anything defined in ceylon.language does not have a superclass.

3.3.3. Satisfaction

The satisfies clause does double duty. It's used to specify that a class or interface is a direct subtype of one or more in-
terfaces, and to specify upper bound type constraints applying to a type parameter.

Note: for this reason the keyword is not named "implements". It can't reasonably be said that a type parameter "imple-
ments" its upper bounds. Nor can it be reasonably said that an interface "implements" its super-interfaces.

• A class or interface may satisfy one or more interfaces, in which case the class or interface is a subtype of the satisfied
interfaces, and inherits their members.

• A type parameter may satisfy one or more interfaces, optionally, a class, and optionally, another type parameter. In this
case, the satisfied types are interpreted as upper bound type constraints on arguments to the type parameter.

Type system

Project Ceylon: 1.2 26

Note: currently, a type parameter upper bound may not be specified in combination with other upper bounds. This restric-
tion will likely be removed in future.

The satisfies clause may specify multiple types.

SatisfiedTypes: "satisfies" PrimaryType ("&" PrimaryType)*

If a satisfied class or interface is a parameterized type, the satisfies clause must explicitly specify type arguments, and
the resulting applied type is inherited.

A type occurring in the satisfies clause may not involve variance annotations in or out, defined below in §3.6.1 Type
arguments and variance.

satisfies Correspondence<Integer,Element> & Collection<Element>

A satisfies clause may not contain two instantiations of the same type declaration.

3.4. Case enumeration and coverage

Coverage is a static relationship between classes, interfaces, and type parameters, produced through the use of case enu-
meration:

• An abstract class or interface may be an enumerated type, with an enumerated list of disjoint subtypes called cases,
as defined by §4.5.8 Enumerated classes and §4.4.4 Enumerated interfaces.

• A type parameter may have an enumerated bound, with an enumerated list possible type arguments, as defined by
§3.5.3 Generic type constraints.

• An abstract class or interface may have a self type, a type parameter representing the concrete type of an instance.

3.4.1. Coverage

Coverage is a strictly weaker relationship than assignability:

• If a type is a subtype of a second type, then the second type covers the first type.

• If a type has a self type, then its self type covers the type.

• If a type X enumerates its cases X1, X2, etc, then the union X1|X2|... of its cases covers the type.

• If a generic type X enumerates its cases, X1, X2, etc, which might involve the type parameters of X, then for any instanti-
ation U of X, and for each case Xi, we can construct a type Ui by, for every type parameter T of X, substituting the cor-
responding type argument of T given in U everywhere T occurs in Xi, and then the union type U1|U2|... of all the res-
ulting types Ui covers Y.

• If a type X covers two types A and B, then X also covers their union A|B.

• If X and Y are both instantiations of a generic type G, and if the type Z is formed by replacing every covariant argument
in Y with the intersection of the upper bounds of the corresponding type parameter of G, after substitution of the given
type arguments in Y for any occurrences of the type parameters of G in the upper bounds, except where the argument is
already a subtype of the upper bounds, then if X covers Z, then X also covers Y.

• Coverage is transitive. If X covers Y and Y covers Z, then X covers Z.

It follows that coverage obeys the identity property of assignability: a type covers itself. However, coverage does not obey
the noncircularity property of assignability. It is possible to have distinct types A and B where A covers B and B covers A.

Case enumeration allows safe use of a type in a switch statement, or as the subject of the of operator. The compiler is able
to statically validate that the switch contains an exhaustive list of all cases of the type, by checking that the union of cases
enumerated in the switch covers the type, or that the second operand of of covers the type.

Note: however, a type is not considered automatically assignable to the union of its cases, or to its self type. Instead, the

Type system

Project Ceylon: 1.2 27

type must be explicitly narrowed to the union of its cases, nor to its self type, using either the of operator or the switch

construct. This narrowing type conversion can be statically checked—if X covers Y then Y of X is guaranteed to succeed at
runtime. Unfortunately, and quite unintuitively, the compiler is not able to analyse coverage implicitly at the same time as
assignability, because that results in undecidability!

3.4.2. Cases

The of clause does triple duty. It's used to define self types and type families, enumerated types, and enumerated type con-
straints. The of clause may specify multiple elements, called cases.

CaseTypes: "of" CaseType ("|" CaseType)*

CaseType: MemberName | PrimaryType

A type occurring in the of clause may not involve variance annotations in or out, defined below in §3.6.1 Type arguments
and variance.

If an interface or abstract class with an of clause has exactly one case, and it is a type parameter of the interface or ab-
stract class, or of the immediately containing type, if any, then that type parameter is a self type of the interface or ab-
stract class, and:

• the self type parameter covers the declared type within the body of the declaration,

• the type argument to the self type parameter in an instantiation of the declared type covers the instantiation, and

• every type which extends or satisfies an instantiation of the declared type must also be covered by the type argument to
the self type parameter in the instantiation.

shared abstract class Comparable<Other>() of Other
given Other satisfies Comparable<Other> {

shared formal Integer compare(Other that);

shared Integer reverseCompare(Other that)
=> that.compare(this) of Other;

}

Comparable<Item> comp = ... ;
Item item = comp of Item;

Otherwise, an interface or abstract class with an of clause may have multiple cases, but each case must be either:

• a subtype of the interface or abstract class, or

• a value reference to a toplevel anonymous class, as defined in §4.5.7 Anonymous classes, that is a subtype of the inter-
face or abstract class.

Then the interface or abstract class is an enumerated type, and every subtype of the interface or abstract class must be a
subtype of exactly one of the enumerated subtypes. A class or interface may not be a subtype of more than one case of an
enumerated type.

If a concrete class has an of clause, then each case must be a value reference to a value constructor of the class, as defined
in §4.9 Constructors, and the class must be a toplevel class. Then the concrete class is an enumerated type, and there may
be no additional non-partial constructors of the class that are not listed in the of clause.

of larger | smaller | equal

of Root<Element> | Leaf<Element> | Branch<Element>

A type parameter with an of clause may specify multiple cases, as defined in §3.5.3 Generic type constraints.

An of clause may not contain:

Type system

Project Ceylon: 1.2 28

• two instantiations of the same type declaration, or

• two value references to the same toplevel anonymous class or value constructor.

3.4.3. Generic enumerated types

If a generic enumerated type X has a case type C, then C must directly extend or satisfy an instantiation Y of X, and for each
type parameter T of X and corresponding argument A of T given in Y, either:

• X is covariant in T and A is exactly Nothing,

• X is contravariant in T and A is exactly the intersection of all upper bounds on T, or Anything if T has no upper bounds,
or

• C is an instantiation of a generic type G and A is exactly S for some type parameter S of G, and S must have the same
variance as T.

Furthermore, if C is an instantiation of a generic type, then T may not occur twice in C.

For example, the following covariant enumerated type is legal:

interface List<out Element>
of Cons<Element> | nil { ... }

class Cons<out Element>(Element element)
satisfies List<Element> { ... }

object nil
satisfies List<Nothing> { ... }

As is the following contravariant enumerated type:

interface Consumer<in Event>
of Logger | Handler<Event>
given Event satisfies AbstractEvent { ... }

interface Logger
satisfies Consumer<AbstractEvent> { ... }

interface Handler<in Event>
satisfies Consumer<AbstractEvent>
given Event satisfies AbstractEvent { ... }

But the following enumerated type is not legal, since it is possible to choose a legal argument T of the type parameter Type
of Expression, such that the case types StringLiteral and NumberLiteral aren't subtypes of the instantiation Expres-

sion<T>:

interface Expression<out Type>
of Function<Type> | StringLiteral | NumberLiteral { ... }

interface Function<out Type>
satisfies Expression<Type> { ... }

interface StringLiteral
satisfies Expression<String> { ... } //error String is not exactly Nothing

interface NumberLiteral
satisfies Expression<Integer|Float> { ... } //error Integer|Float is not exactly Nothing

Note: these rules could be relaxed to allow the definition of generic enumerated types where the list of cases of an instanti-
ation of a generic type depends upon the given type arguments (a "generalized" algebraic type).

3.4.4. Disjoint types

Two types are said to be disjoint if it is impossible to have a value that is an instance of both types. If X and Y are disjoint,
then their intersection X&Y is the bottom type Nothing.

Two types X and Y are disjoint if either:

Type system

Project Ceylon: 1.2 29

• X is a subtype of a type A and Y is a subtype of a type B, where A and B are distinct cases of an enumerated type,

• X and Y are both classes and X is not a subclass of Y and Y is not a subclass of X,

• X is the class Null and Y is an interface,

• X is an anonymous class or an instantiation of a final class and Y is an instantiation of a class of interface, and X does
not inherit Y,

• X is an anonymous class or a final class with no type parameters and Y is a type in which no type parameter reference
occurs, and X is not a suptype of Y,

• X is a type parameter and Y and the intersection of the upper bounds of X are disjoint,

• X is a union type A|B and both Y and A are disjoint and Y and B are disjoint,

• X is an enumerated type with cases A1|A2|... and for every case Ai of X, Y and Ai are disjoint,

• X is an intersection type A&B and either Y and A are disjoint or Y and B are disjoint, or

• X and Y inherit disjoint instantiations of a generic type Z, that is, two instantiations of Z that have the intersection Noth-

ing, as defined below, in §3.7.3 Principal instantiation inheritance.

Furthermore, as a special case, the types X and Y are disjoint if:

• X is a subtype of some instantiation of Sequential, Y is an instantiation of a class or interface that is not a subtype of
any instantiation of Sequential, and Y is not an instantiation of a class or interface that is inherited by Sequential,

• X has the principal supertype instantiation Sequence<A>, Y has the principal supertype instantiation Sequential, and
A and B are disjoint,

• X has the principal supertype instantiation Sequential<A>, Y has the principal supertype instantiation Tuple<J,B,V>,
and A and B are disjoint or Sequential<A> and V are disjoint, or

• X has the principal supertype instantiation Tuple<I,A,U>, Y has the principal supertype instantiation Tuple<J,B,V>, and
A and B are disjoint or U and V are disjoint.

Note: the soundness of these rules is guaranteed by the implementations of the sealed types Sequence, Sequential,
Range, and Tuple in the module ceylon.language.

3.5. Generic type parameters

A function, class, or interface schema may be parameterized by one or more generic type parameters. A parameterized
type schema defines a type constructor, a function that produces a type given a tuple of compatible type arguments. A
parameterized class or function schema defines a function that produces the signature of an invokable operation given a
tuple of compatible type arguments.

TypeParameters: "<" (TypeParameter ",")* TypeParameter ">"

A declaration with type parameters is called generic or parameterized.

• A type schema with no type parameters defines exactly one type. A parameterized type schema defines a template for
producing types: one type for each possible combination of type arguments that satisfy the type constraints specified
by the type. The types of members of the this type are determined by replacing every appearance of each type paramet-
er in the schema of the parameterized type definition with its type argument.

• A function schema with no type parameters defines exactly one operation per type. A parameterized function declara-
tion defines a template for producing overloaded operations: one operation for each possible combination of type argu-
ments that satisfy the type constraints specified by the method declaration.

• A class schema with no type parameters defines exactly one instantiation operation. A parameterized class schema
defines a template for producing overloaded instantiation operations: one instantiation operation for each possible
combination of type arguments that satisfy the type constraints specified by the class declaration. The type of the ob-

Type system

Project Ceylon: 1.2 30

ject produced by an instantiation operation is determined by substituting the same combination of type arguments for
the type parameters of the parameterized class schema.

Note: by convention, type parameter names should be constructed from meaningful words. The use of single-letter type
parameter names is discouraged. The name of a type parameter should be chosen so that declarations within the body of
the parameterized declaration read naturally. For example, class Entry<Key,Item> is reasonable, since Key key and
Item item read naturally within the body of the Entry class. The following identifier names usually refer to a type para-
meter: Element, Other, This, Value, Key, Item, Absent, Argument, Args and Result. Avoid, where reasonable, using these
names for interfaces and classes.

3.5.1. Type parameters and variance

A type parameter allows a declaration to be abstracted over a constrained set of types.

TypeParameter: Variance TypeName ("=" Type)?

Every type parameter has a name and a variance.

Variance: ("out" | "in")?

• A covariant type parameter is indicated using the keyword out.

• A contravariant type parameter is indicated using the keyword in.

• By default, a type parameter is invariant.

A type parameter may, optionally, have a default type argument. A type parameter with a default type argument must oc-
cur after every type parameter with no default type argument in the type parameter list.

The default type argument for a type parameter must satisfy the constraints on the type parameter.

TODO: this restriction could be relaxed, and the assignability of the default type argument to the type constraints checked
at use-sites where the default type argument is used in type expressions.

A default type argument expression for a type parameter of a generic declaration may not involve:

• the type parameter itself,

• any type parameter of the declaration that occurs later in the list of type parameters, nor

• the generic declaration.

Within the body of the schema it parameterizes, a type parameter is itself a type. The type parameter is a subtype of every
upper bound of the type parameter. However, a class or interface may not extend or satisfy a type parameter.

<Key, out Item>

<in Message>

<out Element=Object>

<in Left, in Right, out Result>

3.5.2. Variance validation

A covariant type parameter may only appear in covariant positions of the parameterized schema. A contravariant type
parameter may only appear in contravariant positions of the parameterized schema. An invariant type parameter may ap-
pear in any position.

Furthermore, a type with a contravariant type parameter may only appear in a covariant position in an extended type, satis-
fied type, case type, or upper bound type constraint.

Type system

Project Ceylon: 1.2 31

Note: this restriction exists to eliminate certain undecidable cases described in the paper Taming Wildcards in Java's Type
System, by Tate et al.

To determine if a type expression occurs in a covariant or contravariant position, we first consider how the type occurs
syntactically.

For a generic function we examine the return type of the function, which is a covariant position.

For a generic type schema we examine each shared member, along with extended/satisfied types and case types.

Note: since the visibility rules are purely lexical in nature, it is legal for a member expression occurring in the body of a
class or interface to have a receiver expression other that is not a self-reference, as defined in §6.3 Self references, and
refer to an un-shared member of the class or interface. In this special case, the member is treated as if it were shared for
the purposes of the following variance validation rules.

• An extended type, satisfied type, or case type of the type schema itself is a covariant position.

In a shared method declaration of the parameterized type schema:

• The return type of the method is a covariant position.

• Any parameter type of the method is a contravariant position.

• Any upper bound or enumerated bound of a type parameter of the method is a contravariant position.

In a shared attribute declaration that is not variable:

• The type of the attribute is a covariant position.

In a shared reference declaration that is variable:

• The type of the attribute is an invariant position.

In a shared nested class declaration of the parameterized type schema:

• Any initializer parameter type of the class is a contravariant position.

• Any callable constructor parameter type of the class is an invariant position of the class itself, but a contravariant posi-
tion of any outer containing type.

• Any upper bound or enumerated bound of a type parameter of the class is a contravariant position.

• An extended type, satisfied type, or case type of the nested class is a covariant position.

• Every covariant position of the nested class schema is a covariant position of the containing type schema. Every con-
travariant position of the nested class schema is a contravariant position of the containing type schema.

In a shared nested interface declaration of the parameterized type schema:

• An extended type, satisfied type, or case type of the nested interface is a covariant position.

• Every covariant position of the nested interface schema is a covariant position of the containing type schema. Every
contravariant position of the nested interface schema is a contravariant position of the containing type schema.

For parameters of callable parameters, we first determine if the callable parameter itself is covariant or contravariant:

• A callable parameter of a method or nested class is contravariant.

• A callable parameter of a covariant parameter is contravariant.

• A callable parameter of a contravariant parameter is covariant.

Then:

Type system

Project Ceylon: 1.2 32

• The return type of a covariant callable parameter is a covariant position.

• The return type of a contravariant callable parameter is a contravariant position.

• The type of a parameter of a covariant callable parameter is a contravariant position.

• The type of a parameter of a contravariant callable parameter is a covariant position.

Finally, to determine if a type parameter that occurs as a type argument occurs in a covariant or contravariant position, we
must consider the declared variance of the corresponding type parameter:

• A type argument of a covariant type parameter of a type in a covariant position is a covariant position.

• A type argument of a contravariant type parameter of a type in a covariant position is a contravariant position.

• A type argument of a covariant type parameter of a type in a contravariant position is a contravariant position.

• A type argument of a contravariant type parameter of a type in a contravariant position is a covariant position.

• A type argument of an invariant type parameter of a type in any position is an invariant position.

• A type argument of any type parameter of a type in an invariant position is an invariant position.

3.5.3. Generic type constraints

A parameterized method, class, or interface declaration may declare constraints upon ordinary type parameters using the
given clause.

TypeConstraints: TypeConstraint+

There may be at most one given clause per type parameter.

TypeConstraint: "given" TypeName TypeConstraintInheritance

TypeConstraintInheritance: CaseTypes? SatisfiedTypes?

Note that the syntax for a type constraint is essentially the same syntax used for other type declarations such as class and
interface declarations.

There are two different kinds of type constraint:

• An upper bound, given X satisfies T, specifies that the type parameter X is a subtype of a given type T.

• An enumerated bound, given X of T|U|V specifies that the type parameter X represents one of the enumerated types.

The types listed in an enumerated bound must be mutually disjoint, and each type must be a class or interface type.

TODO: Should we allow unions in upper bounds? Should we allow intersections in enumerated bounds?

A single given clause may specify multiple constraints on a certain type parameter. In particular, it may specify multiple
upper bounds together with an enumerated bound. If multiple upper bounds are specified, at most one upper bound may be
a class, and at most one upper bound may be a type parameter.

Note: in Ceylon 1.0, a type parameter with multiple upper bounds may not have an upper bound which is another type
parameter.

given Value satisfies Ordinal<Value> & Comparable<Value>

given Argument of String | Integer | Float

A type parameter is a subtype of its upper bounds.

class Holder<Value>(shared Value element)
extends Object()

Type system

Project Ceylon: 1.2 33

given Value satisfies Object {
shared actual Boolean equals(Object that) {

return if (is Holder<Value> that
then element==that.element
else false;

}
shared actual Integer hash => element.hash;

}

Every type parameter has an implicit upper bound of type Anything.

TODO: eventually, we would like to have Ceylon's system of flow-sensitive typing support a special sort ofswitch over the
cases of a type parameter with an enumerated bound:

Characters uppercase<Characters>(Characters chars)
given Characters of String | Range<Character> {

switch (Characters)
case (satisfies String) {

return chars.uppercased;
}
case (satisfies Range<Character>) {

return chars.first.uppercased..chars.last.uppercased;
}

}

Note: we have often searched for a need for lower bound type constraints. The syntax would be:

given T abstracts One|Two

With union types they don't appear to be very useful, since it seems that almost every operation with a lower bound can be
rewritten in a more general form using a union type. However, perhaps lower bounds will someday turn out to be useful
when combined with contravariant types. (A lower bound on a parameter which occurs as the argument of a contravariant
type is more like an upper bound).

Note: since we have reified types, it would be possible to support a type constraint that allows instantiation of the type
parameter.

given T(Object arg)

The problem with this is that then inferring T is fragile. And if we don't let it be inferred, we may as well pass T as an or-
dinary parameter. So Ceylon, unlike C#, doesn't support this.

3.6. Generic type arguments

A list of type arguments produces a new type schema from a parameterized type schema, or a new function schema from a
from a parameterized function schema. In the case of a type schema, this new schema is the schema of an applied type, and
is called an instantiation of the parameterized type schema.

A type argument list is a list of type arguments.

TypeArguments: "<" ((TypeArgument ",")* TypeArgument)? ">"

A type argument is a type with a variance.

TypeArgument: Variance Type

A type argument may itself be an applied type, or type parameter, or may involve unions and intersections.

<Key, List<Item>>

<String, Person?>

<String[](Integer), [{Object*}]>

<out Object, in Nothing>

Type system

Project Ceylon: 1.2 34

Type arguments are assigned to type parameters according to the positions they occur in the list.

3.6.1. Type arguments and variance

Every type argument has a variance:

• if the type argument is annotated out then it must be assigned to an invariant type parameter, and it is covariant,

• if the type argument is annotated in then it must be assigned to an invariant type parameter, and it is contravariant, or,

• otherwise, the type argument has the same variance as the type parameter to which it is assigned.

It is illegal for both the type parameter and its type argument to have an explicit variance.

3.6.2. Type argument substitution

Given the schema of a generic declaration, we form the new schema by type argument substitution. Each type argument is
substituted for every appearance of the corresponding type parameter in the schema of the generic declaration, including:

• attribute types,

• function or method return types,

• function or method parameter types,

• class initializer and callable constructor parameter types, and

• type arguments of extended classes and satisfied interfaces.

When a type argument A with no explicit variance annotation is substituted for a type parameter T, all occurrences of T in
the schema of the generic declaration are replaced with A.

For type arguments with explicit variance of a type parameter T, substitution of the type argument depends upon whether
an occurrence of T is a covariant or contravariant position in the schema of the generic declaration, as defined above in
§3.5.2 Variance validation.

When a type argument out A explicitly marked covariant is substituted for a type parameter T:

• Every occurrence of T in a covariant position as a type argument of an invariant type parameter is replaced by out A.

• Every other occurrence of T in a covariant position is replaced by A.

• Every occurrence of T in a contravariant position is replaced by Nothing.

• Every applied type expression E involving A, and occurring as a type argument of an invariant type parameter, and
which was replaced by F according to the previous rules is replaced by out F.

When a type argument in A explicitly marked contravariant is substituted for a type parameter T:

• Every occurrence of T in a contravariant position as a type argument of an invariant type parameter is replaced by in

A.

• Every other occurrence of T in a contravariant position is replaced by A.

• Every occurrence of T in a covariant position is replaced by the intersection of the upper bound type constraints on T in
which T itself does not occur covariantly, or by Anything if there are no such constraints.

• Every applied type expression E involving A, and occurring as a type argument of an invariant type parameter, and
which was replaced by F according to the previous rules is replaced by out F.

3.6.3. Type arguments and type constraints

Type system

Project Ceylon: 1.2 35

A generic type constraint affects the type arguments that can be assigned to a type parameter in any type argument list be-
longing directly to:

• a base expression or member expression

• an applied type expression that occurs directly in a satisfies, of, or extends clause, or

• a metamodel expression, as defined by §6.9 Metamodel expressions.

A type constraint does not apply to any type argument list belonging to an applied type expression that occurs:

• outside of the satisfies, of, and extends clauses, or

• as a type argument within these clauses.

In locations where type constraints apply:

• A type argument to a type parameter T with an upper bound must be a type which is a subtype of all upper bounds of T
in the realization of the generic declaration, as defined in §3.7.7 Realizations.

• A type argument to a type parameter T with an enumerated bound must be a subtype of one of the enumerated types of
the bound on T in the realization of the generic declaration, or it must be a type parameter A with an enumerated bound
where every enumerated type of the bound on A is a subtype of one of the enumerated types of the bound on T in the
realization of the generic declaration.

A type argument list conforms to a type parameter list if, for every type parameter in the list, either:

• there is a type argument to the type parameter, and either the type argument satisfies the constraints of the type para-
meter, or the type argument list occurs in a location where type constraints do not apply, or, alternatively,

• there is no explicit type argument but the type parameter has a default type argument, in which case the type argument
is defaulted by substituting the arguments of all type parameters that occur earlier in the list of type parameters of the
declaration into this default type argument.

There must be at least as many type parameters as type arguments. There must be at least as many type arguments as type
parameters without default values.

3.6.4. Applied types and and variance

If a type argument list conforms to a type parameter list, the combination of the parameterized type together with the type
argument list is itself a type, called an applied type. We also call the applied type an instantiation of the generic type.

For a generic type X, the instantiations Y and Z of X represent the same type if and only if for every A in the list of type ar-
guments specified in Y and corresponding B in the list of type arguments specified in Z, A is exactly the same type as B, and
the variance of A is the same as B.

For a generic type G, and instantiations Y and Z of G, Y is a subtype of Z if and only if, for every type parameter T of G, and
corresponding arguments A specified in Y and B specified in Z:

• B is a covariant type argument, and A is contravariant, and T is a subtype of B, or

• B is a contravariant type argument, and A is covariant, and the type B is precisely Nothing, or

• B is a covariant type argument, and A is not contravariant, and the type A is a subtype of the type B, or

• B is a contravariant type argument, and A is not covariant, and the type B is a subtype of the type A, or

• B and A are both invariant type arguments (neither covariant nor contravariant), and A and B are exactly the same type.

Note that if A is an invariant type argument in the instantiation X<A> of a generic type X<T>, then a type Z is a subtype of
X<A> if and only if Z has the principal instantiation X<A>.

Type system

Project Ceylon: 1.2 36

3.6.5. Type argument inference

When a direct invocation expression, as defined by §6.6 Invocation expressions, does not explicitly specify type argu-
ments, the type arguments are inferred from the argument expression types.

• In the case of a direct invocation of a function or class, type arguments are inferred for the type parameters of the func-
tion or class.

• In the case of a direct invocation of a callable constructor, type arguments are inferred for the type parameters of the
class to which the constructor belongs.

The types of the argument expressions and the declared types of the corresponding parameters determine an inferred lower
bound or inferred upper bound for each type parameter.

If a list of argument expressions has types A1,A2,... and the corresponding list of parameters has declared types
P1,P2,... then:

• The inferred lower bound for a type parameter T of the generic declaration is the conjunction of all inferred lower
bounds Ai on Pi for T.

• The inferred upper bound for a type parameter T of the generic declaration is the conjunction of all inferred upper
bounds Ai on Pi for T.

Given types A and P, we determine the inferred lower bound A on P for T according to the nature of A and P:

• If P is exactly T, and the location at which P occurs in the parameter list is not a contravariant location, the inferred
lower bound A on P for T is T abstracts A.

• If P is a union type Q|R, the lower bound A on P for T is the disjunction of the lower bound A on Q for T with the lower
bound A on R for T. Note: this case is special.

• If P is an intersection type Q&R, the lower bound A on P for T is the conjunction of the lower bound A on Q for T with the
lower bound A on R for T.

• If A is a union type B|C, the lower bound A on P for T is the conjunction of the lower bound B on P for T with the lower
bound C on P for T.

• If A is an intersection type B&C, the lower bound A on P for T is the disjunction of the lower bound B on P for T with the
lower bound C on P for T.

• If P is an applied type Q<P1,P2,...> of a parameterized type Q, and A is a subtype of an applied type Q<A1,A2,..>, the
lower bound A on P for T is the conjunction of all lower bounds Ai on Pi for T.

• Otherwise, if A is not a union or intersection, and if P is neither an applied type, a union, or an intersection, nor exactly
T, the lower bound A on P for T is null.

Where:

• the conjunction of a lower bound T abstracts A with a lower bound T abstracts B is the lower bound T abstracts

A|B,

• the disjunction of a lower bound T abstracts A with a lower bound T abstracts B is the lower bound T abstracts

A&B,

• the conjunction or disjunction of a lower bound T abstracts A with a null lower bound is T abstracts A, and

• the conjunction or disjunction of two null lower bounds is null.

Given types A and P, we determine the inferred upper bound A on P for T according to the nature of A and P:

• If P is exactly T, and the location at which P occurs in the parameter list is not a covariant location, the inferred upper
bound A on P for T is T satisfies A.

Type system

Project Ceylon: 1.2 37

• If P is a union type Q|R, the upper bound A on P for T is the disjunction of the upper bound A on Q for T with the upper
bound A on R for T. Note: this case is special.

• If P is an intersection type Q&R, the upper bound A on P for T is the conjunction of the upper bound A on Q for T with the
upper bound A on R for T.

• If A is a union type B|C, the upper bound A on P for T is the disjunction of the upper bound B on P for T with the upper
bound C on P for T.

• If A is an intersection type B&C, the upper bound A on P for T is the conjunction of the upper bound B on P for T with the
upper bound C on P for T.

• If P is an applied type Q<P1,P2,...> of a parameterized type Q, and A is a subtype of an applied type Q<A1,A2,..>, the
upper bound A on P for T is the conjunction of all upper bounds Ai on Pi for T.

• Otherwise, if A is not a union or intersection, and if P is neither an applied type, a union, or an intersection, nor exactly
T, the upper bound A on P for T is null.

Where:

• the conjunction of an upper bound T satisfies A with an upper bound T satisfies B is the upper bound T satis-

fies A&B,

• the disjunction of an upper bound T satisfies A with an upper bound T satisfies B is the upper bound T satis-

fies A|B,

• the conjunction or disjunction of an upper bound T satisfies A with a null upper bound is T satisfies A, and

• the conjunction or disjunction of two null upper bounds is null.

The inferred type argument to a covariant type parameter T of the generic declaration is:

• Nothing, if the inferred lower bound for T is null, or, otherwise,

• the type A, where the inferred lower bound for T is T abstracts A.

The inferred type argument to a contravariant type parameter T of the generic declaration is:

• Anything, if the inferred upper bound for T is null, or, otherwise,

• the type A, where the inferred upper bound for T is T satisfies A.

An invariant type parameter T of the generic declaration is treated, for the purposes of type argument inference, as if it
were covariant or contravariant, depending upon how it occurs in the types of parameters explicitly assigned arguments by
the direct invocation, and, in the case of direct invocation of a generic function or class alias, upon how it occurs in the re-
turn type of the function or aliased type of the class alias.

• If the generic declaration is a function or class alias, and T occurs covariantly in its return type or aliased type, and does
not occur contravariantly or invariantly in its return type or aliased type, then T is treated as covariant.

• If the generic declaration is a function or class alias, and T occurs contravariantly in its return type or aliased type, and
does not occur covariantly or invariantly in its return type or aliased type, then T is treated as contravariant.

• Otherwise, if T occurs contravariantly in the type of any parameter to which an argument is explicity assigned by the
argument list of the direct invocation, and does not occur covariantly or invariantly in the type of any parameter to
which an argument is explicitly assigned, then T is treated as contravariant.

• Finally, if none of the above cases apply, T is treated as covariant.

An argument expression with no type occurring in a dynamic block, as defined in §5.3.5 Dynamic blocks, may cause type
argument inference to fail. When combining bounds using union, any constituent bound with no type results in a bound
with no type. When combining bounds using intersection, any constituent bound with no type is eliminated. If the resulting
inferred upper or lower bound has no type, type argument inference is impossible for the type argument, and type argu-

Type system

Project Ceylon: 1.2 38

ments must be specified explicitly.

Finally, when every type parameter Pi has been assigned an inferred type argument Ai, each inferred type argument is ad-
justed according to the upper bound type constraints on Pi. The final inferred type argument is the intersection of Ai with
every type Vj formed by substituting all Ais for their corresponding Pis in an upper bound Uj of Pi.

If the inferred type argument does not satisfy the generic type constraints on T, a compilation error results.

Consider the following invocation:

[Element+] prepend<Element>(Element head, Element[] sequence) { ... }
value result = prepend(null, {"hello", "world"});

The inferred type of Element is the union type String?.

Now consider:

class Bag<out Element>(Element* elements) {
shared Bag<ExtraElement> with<ExtraElement>(ExtraElement* elements)

given ExtraElement abstracts Element { ... }
}
Bag<String> bag = Bag("hello", "world");
value biggerBag = bag.with(1, 2, 5.0);

The inferred type of ExtraElement is the union type Integer|Float|String.

Finally consider:

interface Delegate<in Value> { ... }
class Consumer<in Value>(Delegate<Value>* delegates) { ... }
Delegate<String> delegate1 = ... ;
Delegate<Object> delegate2 = ... ;
value consumer = Consumer(delegate1, delegate2);

The inferred type of Value is Consumer<String>.

TODO: What about upper bounds in which the type parameter itself appears (the infamous self-type problem with Com-

parable and Numeric) or in which another type parameter appears?

An inferred type argument never involves an anonymous class, as defined in §4.5.7 Anonymous classes. When an inferred
type would involve an anonymous class type, the anonymous class is replaced by the intersection of the class type it ex-
tends with all interface types it satisfies.

3.7. Principal instantiations and polymorphism

Inheritance interacts with type parameterization to produce subtyping relationships between instantiations of generic types.
The notion of an inherited instantiation and the notion of a principal instantation help us reason about these relationships.

Warning: this section is not for the faint of heart. Feel free to skip to Chapter 4, Declarations, unless you're really, really
interested in precisely how the compiler reasons about inheritance of generic types.

3.7.1. Inherited instantiations

For a generic type G, inheritance produces subtypes with inherited instantiations of the generic type.

• If a type X directly extends or satisfies an instantiation V of G, then X has the inherited instantiation V of G.

• If a generic type H extends or satisfies an instantiation V of G, that may involve the type parameters of H, then for any
instantiation U of H, we can construct an instantiation W of G by, for every type parameter T of H, substituting the type ar-
gument of T given in U everywhere T occurs in V, and then U has the inherited instantiation W of G.

• If a type X is a subtype of a type Y, and Y has an inherited instantiation W of a generic type G, then X also has this inher-
ited instantiation.

3.7.2. Type argument distinctness

Type system

Project Ceylon: 1.2 39

A pair of type arguments A and B are considered:

• provably distinct, if neither A nor B involves a type parameter and either:

• both arguments are invariant, and are not exactly the same type,

• one argument is covariant and the other argument is invariant and is not a subtype of the covariant argument, or

• one argument is contravariant and the other argument is invariant and is not a supertype of the contravariant argu-
ment,

• provably not distinct, if either:

• both arguments are invariant, and are exactly the same type,

• both arguments are covariant,

• both arguments are contravariant,

• one argument is covariant and the other argument is invariant and is a subtype of the covariant argument, or

• one argument is contravariant and the other argument is invariant and is a supertype of the contravariant argument,

• otherwise, possibly distinct, if either A or B involves a type parameter and A and B are not provably not distinct, or if A
and B have opposite variances.

Note: the unfortunate case of possible distinctness is an incompleteness in the type system arising from the fact that Ceylon
does not currently allow a type argument with both an upper and a lower bound, that is, a type argument of form in X

out Y.

3.7.3. Principal instantiation inheritance

If a class or interface type X has the inherited instantiations V and W of some generic type Y, then:

• for every invariant type parameter T of Y, the type argument A of T given in V and the type argument B of T given in W

must be exactly the same type, and, furthermore,

• X is a subtype of an instantiation U of Y such that U is a subtype of V&W.

Therefore, if a type X is a subtype of the instantiations V and W of some generic type Y, then either:

• for some invariant type parameter T of Y, the argument A of T given in V and the argument B of T given in W are prov-
ably distinct type arguments, and then the type V&W is the bottom type Nothing, and we say that V and W are disjoint in-
stantiations of Y, or

• for some invariant type parameter T of Y, the argument of A of T given in V and the argument B of T given in W are pos-
sibly distinct, and then we say that V and W are irreconcilable instantiations of Y, or

• otherwise, X must be a subtype of an instantiation P of Y formed by taking each type parameter T of Y, and constructing
a type argument C for T from the type arguments A of T given in V and B of T given in W:

• if A and B are both invariant, then they must be exactly the same type, and C is the same type as A and B,

• if both A and B are covariant, then C is out A&B

• if both A and B are contravariant, then C is in A|B,

• if either A or B is covariant and the other is invariant, with exact type D, then C is just D, or

• if either A or B is contravariant, and the other is invariant, with exact type D, then C is just D.

Finally, the following identities result from principal instantiation inheritance. For any generic type X<T>, and for any giv-

Type system

Project Ceylon: 1.2 40

en types A and B:

• X<A>&X is exactly equivalent to X<A&B> if X<T> is covariant in T, unless either A or B involves type parameters, and

• X<A>&X is exactly equivalent to X<A|B> if X<T> is contravariant in T, unless either A or B involves type parameters.

3.7.4. Principal instantiation of a supertype

If a type X is a subtype of some instantiation V of a generic type Y, then, as a result of the principal instantiation inheritance
restriction, we can form a unique instantiation of Y that is a subtype of every instantiation of Y to which X is assignable. We
call this type the principal instantiation of Y for X.

We compute principal instantiations by making use of the identities observed above in §3.2.3 Union types, §3.2.4 Intersec-
tion types, and §3.7.3 Principal instantiation inheritance. For any generic type X:

• The principal instantiation of the union U|V of two instantiations of X, U and V, is an instantiation P of X formed by tak-
ing each type parameter T of X and constructing a type argument C for T from the type arguments A of T given in U and
B of T given in V:

• if either A or B is covariant, and neither is contravariant, then C is the covariant type argument out A|B,

• if either A or B is contravariant, and neither is covariant, then C is the contravariant type argument in A&B, or

• if both A and B are invariant, and if A and B are exactly the same type, then C is this type.

• The principal instantiation of the intersection U&V of two instantiations of X, U and V, is an instantiation P of X formed
by taking each type parameter T of X and constructing a type argument C for T from the type arguments A of T given in
U and B of T given in V:

• if either A or B is covariant, and neither is contravariant, then C is the covariant type argument out A&B,

• if either A or B is contravariant, and neither is covariant, then C is the contravariant type argument in A|B, or

• if both A and B are invariant, and if A and B are exactly the same type, then C is this type.

• Finally, the principal instantiation of a generic type X for a type Y which has one or more inherited instantiations of X is
the principal instantiation of the intersection of all the inherited instantiations of X.

Note: since we do not support type arguments with both upper and lower bounds, there are two cases where we cannot
form a principal instantiation for an intersection type.

• Intersections such as X<in A> & X<out B>, where the principal instantiation would be X<in A out B>.

• An intersection X<A> & X<P> of two instantiations of an invariant type, X<T> where one type argument P is a type para-
meter. The principal instantiation should be X<in A|P out A&P>.

In these cases we simply disallow references to members of the intersection type.

3.7.5. Refinement

A class or interface may declare an actual member with the same name as a member that it inherits from a supertype if
the supertype member is declared formal or default. Then we say that the first member refines the second member, and it
must obey restrictions defined in §4.5.6 Member class refinement, §4.7.8 Method refinement, or §4.8.7 Attribute refine-
ment.

A declaration may not be annotated both formal and default.

If a declaration is annotated formal, default, or actual then it must also be annotated shared.

For any class or interface X, and for every declared or inherited member of X that is not refined by some other declared or
inherited member of X, and for every other member declared or inherited by X that directly or indirectly refines a declara-
tion that the first member itself directly or indirectly refines, the principal instantiation for X of the type that declares the

Type system

Project Ceylon: 1.2 41

first member must be a subtype of the principal instantiation for X of the type that declares the second member.

Note: a related restriction is defined in §5.1.1 Declaration name uniqueness.

3.7.6. Qualified types

A type declaration that directly occurs in the body of another type is called a nested type. If a nested type is annotated
shared, it may be used in a type expression outside the body in which it is declared, if and only if it occurs as a qualified
type, as specified in §3.2.7 Type expressions.

The qualified types X.U and Y.V are exactly the same types if and only if U is exactly the same type as V, and in the case
that this type is a member of a generic type Z, then the principal instantiation of Z for X is exactly the same type as the prin-
cipal instantiation of Z for Y.

A qualified type X.U is a subtype of a qualified type Y.V if U is a subtype of V, and in the case that V is a member of a gen-
eric type Z, then X is a subtype of the principal instantiation of Z for Y.

3.7.7. Realizations

Given a member declared by Y, and a declaration that refines it, we can construct a refined realization of the member or
nested type:

• first determine the principal instantiation of Y for the class or interface which refines the member, and then

• substitute the type arguments in this principal instantiation into the member schema.

Given an unqualified reference, as defined in §5.1.7 Unqualified reference resolution, to a declaration, and, in the case of a
generic declaration, a list of type arguments for the type parameters of the declaration, we can construct an unqualified
realization of the declaration:

• if the declaration is a member declared by a type Y, first determine the principal instantiation of Y for the inheriting or
declaring class or interface, and then

• again, only if the declaration is a member declared by a type, substitute the type arguments in this principal instanti-
ation into the declaration schema, and, finally,

• substitute the type arguments into the declaration schema.

Given a qualified reference, as defined in §5.1.8 Qualified reference resolution, with a qualifying type X, to a member or
nested type declared by Y, and, in the case of a generic member or generic nested type, a list of type arguments for the type
parameters of the member, we can construct a qualified realization of the member or nested type:

• first determining the principal instantiation of Y for X, and then

• substituting the type arguments in this principal instantiation into the declaration schema, and, finally,

• in the case of a generic member or generic nested type, substituting the type arguments into the declaration schema.

If, for any given qualified or unqualified reference, it is impossible to form the principal instantiation of the type that de-
clares the referenced declaration, due to the hole described above in §3.7.4 Principal instantiation of a supertype, it is im-
possible to form a realization, and the reference to the declaration is illegal.

Type system

Project Ceylon: 1.2 42

Chapter 4. Declarations

Ceylon is a statically typed language. Classes, interfaces, functions, values and aliases must be declared before use. The
declaration of a function or value must include an explicit type, or allow the type to be inferred. Static typing allows the
compiler to detect many errors, including:

• typing errors in identifier names,

• references to types which do not exist or are not visible,

• references to type members which do not exist or are not visible,

• argument lists which do not match parameter lists,

• type argument lists which do not match type parameter lists,

• operands to which an operator cannot apply,

• incompatible assignment of an expression of one type to a program element of a different type,

• evaluation of a value before it has been explicitly specified or assigned,

• assignment to a non-variable value,

• failure to refine a formal member of a supertype,

• refinement of a non-formal, non-default member of a supertype,

• switch statements which do not exhaust all cases of an enumerated type.

All declarations follow a general pattern:

Annotations
(keyword | Type) (TypeName | MemberName) TypeParameters? Parameters*
CaseTypes? ExtendedType? SatisfiedTypes?
TypeConstraints?
(Definition | ";")

A type parameter does not need an explicit declaration of this form unless it has constraints. In the case that it does have
constraints, the constraint declaration does follow the general pattern.

This consistent pattern for declarations, together with the strict block structure of the language, makes Ceylon a highly reg-
ular language.

4.1. Compilation unit structure

A compilation unit is a text file, with the filename extension .ceylon.

Note: it is recommended that source file names contain only characters from the ASCII character set. This minimizes
problems when transferring Ceylon source between operating systems.

There are three kinds of compilation unit:

• A regular compilation unit contains a list of toplevel type, value, or function definitions.

• A module descriptor, defined in §9.3.10 Module descriptors, contains a module declaration. The file must be named
module.ceylon.

• A package descriptor, defined in §9.3.9 Package descriptors, contains a package declaration. The file must be named
package.ceylon.

Any compilation unit may begin with a list of imported types, values, and functions.

Import* (ModuleDescriptor | PackageDescriptor | Declaration*)

Project Ceylon: 1.2 43

4.1.1. Toplevel and nested declarations

A toplevel declaration defines a type—a class or interface—or a type alias, or a function or value.

Declaration: FunctionValueDeclaration | TypeDeclaration | ParameterDeclaration

FunctionValueDeclaration: FunctionDeclaration | ValueDeclaration | SetterDeclaration

TypeDeclaration: ClassDeclaration | ObjectDeclaration | InterfaceDeclaration | TypeAliasDeclaration

A toplevel declaration is not polymorphic and so may not be annotated formal, default, or actual.

Note: in a future release of the language, we might relax this restriction and support package extension with toplevel
member refinement. This can be viewed as a regularization of the language. The practical application is that it would
make toplevel invocations and instantiations polymorphic, obviating the need for things like dependency injection.

Most toplevel declarations contain nested declarations.

Nested declarations are often mixed together with executable statements.

4.1.2. Packages

Each compilation unit belongs to exactly one package. Every toplevel declaration of the compilation unit also belongs dir-
ectly to this package. The package is identified by the location of the text file on the file system, relative to a root source
directory, as defined in §9.2 Source layout.

A package is a namespace. A full package name is a period-separated list of all-lowercase identifiers.

FullPackageName: PackageName ("." PackageName)*

Note: it is recommended that package names contain only characters from the ASCII character set.

There is also a default package whose name is empty. It is impossible to import declarations from this package.

Every package belongs to exactly one module, as specified in §9.3 Module architecture. The default package belongs to
the default module.

4.2. Imports

Code in one compilation unit may refer to a toplevel declaration in another compilation unit in the same package without
explicitly importing the declaration. It may refer to a declaration defined in a compilation unit in another package only if it
explicitly imports the declaration using the import statement.

An import statement specifies the name of a package to import from, and a list of declarations to import from that pack-
age.

Import: "import" FullPackageName ImportElements

For a given package, there may be at most one import statement per compilation unit.

An import statement may import from a package if and only if:

• the package belongs to the same module as the compilation unit containing the import statement, as specified by §9.2
Source layout, or

• the package is declared shared in its package descriptor, and the module descriptor of the module to which the compil-
ation unit containing the import statement belongs, as specified by §9.2 Source layout, explicitly or implicitly imports
the module containing the package, as defined by §9.3.10 Module descriptors.

Each import statement imports one or more toplevel declarations from the given package, specifying a list of import ele-
ments.

Declarations

Project Ceylon: 1.2 44

ImportElements: "{" (ImportElement ",")* (ImportElement | ImportWildcard) "}"

ImportElement: ImportTypeElement | ImportObjectElement | ImportFunctionValueElement

An import element is a reference to either:

• a single toplevel type (a class, interface, or alias) of the package,

• a single toplevel function or value of the package, or

• all toplevel declarations of the package.

An import element may either:

• import a name into the toplevel namespace of the compilation unit in which it occurs, or

• result in an alias for a member of a type within the compilation unit in which it occurs.

Every import element belonging directly to an import statement imports into the toplevel namespace of the compilation
unit.

An import element may not refer to a declaration that is not visible to the compilation unit, as defined by §5.1.3 Visibility.

An import statement may not contain two import elements which refer to the same declaration.

Note that toplevel declarations in the package ceylon.language never need to be explicitly imported. They are implicitly
imported by every compilation unit.

An imported function or value may not hide, as defined in §5.1.4 Hidden declarations, any of the modifiers declared in
ceylon.language listed in §7.4.1 Declaration modifiers, unless the modifier itself has an alias import in the compilation
unit.

Note: an unused import results in a compiler warning.

4.2.1. Type imports

An import element that specifies a type name imports the toplevel type with that name from the imported package or type.

ImportTypeElement: TypeAlias? TypeName ImportElements?

The specified name must be the name of a type declaration belonging to the imported package or type.

import ceylon.collection { MutableSet, MutableList, MutableMap }

The import element may be followed by a list of nested import elements:

• if the import element imports into the toplevel namespace of the compilation unit, and if a nested import element is a
reference to a constructor, the nested import element imports into the toplevel namespace of the compilation unit, and
need not specify an alias, or, otherwise

• the nested import element only defines an alias for the referenced member of the imported type, and this alias must be
specified explicitly.

Note: an import element referring to a static member of a Java class imports the static member into the toplevel
namespace of the compilation unit. However, this behavior is outside the scope of this specification.

4.2.2. Anonymous class imports

An import element that specifies the name of an anonymous class, as defined in §4.5.7 Anonymous classes, imports the
anonymous class with that name from the imported package or type.

ImportObjectElement: FunctionValueAlias? MemberName ImportElements?

Declarations

Project Ceylon: 1.2 45

The specified name must be the name of an anonymous class declaration belonging to the imported package or type.

import ceylon.file { home, current }

The import element may be followed by a list of nested import elements:

• if the import element imports into the toplevel namespace of the compilation unit, a nested import element imports into
the toplevel namespace of the compilation unit, and need not specify an alias, or, otherwise

• the nested import element only defines an alias for the referenced member of the imported type, and this alias must be
specified explicitly.

4.2.3. Function and value imports

An import element that specifies a function or value name imports the toplevel function or value with that name from the
imported package or type.

ImportFunctionValueElement: FunctionValueAlias? MemberName

The specified name must be the name of a function or value declaration belonging to the imported package or type.

import ceylon.math.float { sqrt, e, pi }

4.2.4. Alias imports

The optional alias clause in a fully-explicit import allows resolution of cross-namespace declaration name collisions.

TypeAlias: TypeName "="

FunctionValueAlias: MemberName "="

An alias assigns a different name to the imported declaration, or to a member of the imported declaration. This name is
visible within the compilation unit in which the import statement occurs.

import java.util { JavaMap = Map }

import my.math { fib = fibonnacciNumber }

import java.lang {
Math { sin, cos, ln=log },
System { sysprops=properties },
Char=Character { upper=toUpperCase, lower=toLowerCase, char=charValue }

}

4.2.5. Wildcard imports

The elipsis ... acts as a wildcard in import statements. An import statement that specifies a wildcard imports every top-
level declaration of the imported package, except for any declaration whose name collides with the name of a toplevel de-
claration in the compilation unit in which the import statement appears.

ImportWildcard: "..."

An import statement may specify a list of alias imports followed by a wildcard. In this case, the alias imports are imported
with the specified names, and all other toplevel declarations are imported with their declared names.

import ceylon.collection { ... }

import my.math { fib = fibonnacciNumber, ... }

Note: overuse of wildcard imports is discouraged.

Declarations

Project Ceylon: 1.2 46

4.2.6. Imported name

Inside a compilation unit which imports a declaration, the declaration may be referred to, as specified in §5.1.7 Unquali-
fied reference resolution and §5.1.8 Qualified reference resolution, by its imported name:

• For an import element with an alias, the imported name is the alias.

• For an import element with no alias, or for a wildcard import, the imported name is the original name of the declara-
tion.

An import element may not result in an imported name that is the same as the name of a toplevel declaration contained in
the compilation unit in which the import element occurs.

Two import elements occurring in the same compilation unit, which import into the toplevel namespace of the compilation
unit, may not result in the same imported name.

Two nested import elements belonging to the same import element may not result in the same imported name.

Note: if an imported declaration is already referenceable within a compilation unit without the import statement, for ex-
ample, if it is defined in the same package, or in ceylon.language, then, even with the import statement, it is still refer-
enceable via its declared name, as well as via the imported name.

4.3. Parameters

A function, class, or callable constructor declaration may declare parameters. A parameter is a value or function belonging
to the declaration it parameterizes. Parameters are distinguished from other values or functions because they occur in a
parameter list. A value or function is a parameter of a function, class, or constructor if it is:

• declared inline in a parameter list of the function, class, or callable constructor, or

• declared normally, within the body of the class, function, or callable constructor, but named in a parameter list of the
class, function, or callable constructor.

A parameter list of a function, class, or constructor may have one or more elements without explicit type declarations.
Each such element is interpreted as the name of a parameter declaration occurring in the body of the class, function, or
constructor, and there must be a value or function declaration with that name. For a function, such an element is only al-
lowed in the last parameter list of the function.

As a special exception, if a parameter of an anonymous function has no explicit type declaration, and there is no declara-
tion with the given name occurring in the body of the anonymous function, then the type of the parameter must be infer-
able, according to §6.4.1 Anonymous function parameter type inference.

Conversely, every parameter declaration that occurs outside a parameter list must have the same name as a parameter with
no explicit type that occurs in the parameter list of the function, class, or constructor in whose body the parameter declara-
tion directly occurs, and its default argument, if any, must be specified in the parameter list.

A parameter declaration may only occur in a parameter list, or directly, as defined by §5.1 Block structure and references,
in the body of a class, function, or callable constructor. A parameter declaration may not occur directly in the body of a
getter, setter, or value constructor, nor in the body of a control structure. Nor may a parameter declaration appear as a top-
level declaration in a compilation unit.

ParameterDeclaration: (ValueParameter | CallableParameter | VariadicParameter) ";"

The following class definitions are semantically identical:

class Person(shared String name, shared variable Integer age=0, Address* addresses) {}

class Person(name, age=0, addresses) {
shared String name;
shared variable Integer age;
Address* addresses;

}

Declarations

Project Ceylon: 1.2 47

4.3.1. Parameter lists

A parameter list is a list of parameter declarations and of names of parameters declared in the body of the class or function
to which the parameter list belongs. A parameter list may include, optionally:

• one or more required parameters,

• one or more defaulted parameters (parameters with default values), and/or

• a variadic parameter.

In a parameter list, defaulted parameters, if any, must occur after required parameters, if any. The variadic parameter, if
any, must occur last.

Parameters: "(" ((Required ",")* (Required | (Defaulted ",")* (Defaulted | Variadic)))? ")"

Every parameter list has a type, which captures the types of the individual parameters in the list, whether they are defaul-
ted, and whether the last parameter is variadic. This type is always an subtype of Anything[]. The type of an empty para-
meter list with no parameters is [].

A parameter may not be annotated formal, but it may be annotated default.

4.3.2. Required parameters

A required parameter is a value or callable parameter without a default argument.

A required parameter in a parameter list may be a parameter declaration, or the name of a non-variadic parameter declared
in the body of the function or class.

Required: ValueParameter | CallableParameter | MemberName

Required parameters must occur before any other parameters in the parameter list.

4.3.3. Defaulted parameters

A defaulted parameter is a value or callable parameter that specifies an expression that produces a default argument. A de-
faulted parameter may be either:

• a non-variadic parameter declaration, together with a default argument expression, or

• the name of a non-variadic parameter declared in the body of the function or class, together with its default argument
expression.

Defaulted: ValueParameter Specifier | CallableParameter LazySpecifier | MemberName Specifier

The = and => specifiers are used throughout the language. In a parameter list they are used to specify a default argument.

Specifier: "=" Expression

LazySpecifier: "=>" Expression

The default argument expression may involve other parameters declared earlier in the parameter list or lists. It may not in-
volve parameters declared later in the parameter list or lists.

The default argument expression may not involve an assignment, compound assignment, increment, or decrement operat-
or.

Defaulted parameters must occur after required parameters in the parameter list.

(Product product, Integer quantity=1, Price pricing(Product p) => p.price)

A parameter of a method or class annotated actual may not specify a default argument. Instead, it inherits the default ar-

Declarations

Project Ceylon: 1.2 48

gument, if any, of the corresponding parameter of the method it refines.

If two parameter lists are almost identical, differing only in that the first parameter of one list is defaulted, and the first
parameter of the second list is required, and P is the the type of the second parameter list, then the type of the first paramet-
er list is []|P.

Note: in Ceylon 1.0, for a function with multiple parameter lists, defaulted parameters may only occur in the first paramet-
er list. This restriction will be removed.

TODO: Should we, purely for consistency, let you write f(Float x) => x in a parameter list, when the callable paramet-
er is declared in the body of the function or class?

4.3.4. Value parameters

A value parameter is a reference, as specified in §4.8.1 References, that is named or defined in a parameter list. Like any
other value declaration, it has a name, type, and, optionally, annotations.

ValueParameter: Annotations ValueParameterPrefix MemberName

ValueParameterPrefix: Type | "dynamic"

A value parameter may be declared using the keyword dynamic in place of the parameter type, indicating that it is a par-
tially typed declaration. Such a parameter has no type.

If a value parameter x has type X, and a parameter list has type P with the principal instantiation Sequential<Y>, then the
type of a new parameter list formed by prepending x to the first parameter list is:

• Tuple<X|Y,X,P>, or

• []|Tuple<X|Y,X,P> if x is defaulted.

The default argument expression, if any, for a callable parameter is specified using an ordinary = specifier. The type of the
default argument expression must be assignable to the declared type of the value parameter.

(String label, Anything() onClick)

({Value*} values, Comparison(Value,Value) by)

4.3.5. Callable parameters

A callable parameter is a function, as specified in §4.7 Functions, named or defined in a parameter list. Like any other
function declaration, it has a name, type, one or more parameter lists, and, optionally, annotations.

CallableParameter: Annotations CallableParameterPrefix MemberName Parameters+

CallableParameterPrefix: Type | "void" | "dynamic"

A callable parameter may be declared using the keyword dynamic in place of the return type, indicating that it is a partially
typed declaration. Such a parameter has no return type.

If a callable parameter f has callable type X(*A), as specified below in §4.7.1 Callable type of a function, and a parameter
list has type P with the principal instantiation Sequential<Y>, then the type of a new parameter list formed by prepending
f to the first parameter list is:

• Tuple<Y|X(*A),X(*A),P>, or

• []|Tuple<Y|X(*A),X(*A),P> if f is defaulted.

The default argument expression, if any, for a callable parameter is specified using a lazy => specifier. The type of the de-
fault argument expression must be assignable to the return type of the callable parameter.

(String label, void onClick())

Declarations

Project Ceylon: 1.2 49

({Value*} values, Comparison by(Value x, Value y))

4.3.6. Variadic parameters

A variadic parameter is a value parameter that accepts multiple arguments:

• A variadic parameter declared T* accepts zero or more arguments of type T, and has type [T*].

• A variadic parameter declared T+ accepts one or more arguments of type T, and has type [T+].

VariadicParameter: Annotations VariadicParameterPrefix MemberName

VariadicParameterPrefix: UnionType ("*" | "+")

A variadic parameter in a parameter list may be a variadic parameter declaration, or the name of a variadic parameter de-
clared in the body of the function or class.

Variadic: VariadicParameter | MemberName

The variadic parameter must be the last parameter in a parameter list. A variadic parameter may not have a default argu-
ment. A variadic parameter declared T+ may not occur in a parameter list with defaulted parameters.

(Name name, Organization? org=null, Address* addresses)

(Float+ floats)

The type of a parameter list containing just a variadic parameter of type T* is [T*] The type of a parameter list containing
just a variadic parameter of type T+ is [T+].

Note: in Ceylon 1.0, for a function with multiple parameter lists, a variadic parameters may only occur in the first para-
meter list. This restriction will be removed.

4.4. Interfaces

An interface is a type schema, together with implementation details for some members of the type. Interfaces may not be
directly instantiated.

InterfaceDeclaration: Annotations InterfaceHeader (InterfaceBody | TypeSpecifier ";")

An interface declaration may optionally specify a list of type parameters. An interface declaration may also have a list of
interfaces is satisfies, a self type or an enumerated list of cases, and/or a list of type constraints.

InterfaceHeader: ("interface"|"dynamic") TypeName TypeParameters? InterfaceInheritance TypeConstraints?

InterfaceInheritance: CaseTypes? SatisfiedTypes?

To obtain a concrete instance of an interface, it is necessary to define and instantiate a class that satisfies the interface, or
define an anonymous class that satisfies the interface.

The body of an interface contains:

• member (method, attribute, and member class) declarations,

• specification statements interpretable as attribute or method refinement, as defined in §4.8.7 Attribute refinement and
§4.7.8 Method refinement, and

• nested interface, type alias, and abstract class declarations.

InterfaceBody: "{" (Declaration | Specification)* "}"

Declarations

Project Ceylon: 1.2 50

Unlike the body of a class, method, or attribute, the body of an interface is not executable, and does not directly contain
procedural code.

shared interface Comparable<Other> {
shared formal Comparison compare(Other other);
shared Boolean largerThan(Other other) => compare(other)==larger;
shared Boolean smallerThan(Other other) => compare(other)==smaller;

}

An interface may declare formal methods, attributes, and member classes, and concrete methods, getters, setters, and
member classes. A reference declaration, as defined in §4.8.1 References, or anonymous class declaration, as defined in
§4.5.7 Anonymous classes, may not directly occur in the body of an interface.

A non-abstract nested class declaration is called a member class of the interface. A nested interface or abstract class
declaration is not part of the schema of the interface type, and is therefore not considered a member of the interface.

4.4.1. Interface bodies

The body of an interface consists purely of declarations. The following constructs may not occur sequentially in the body
of an interface:

• a statement or control structure (except for specification statements interpretable as attribute or method refinement),

• a reference declaration,

• a forward-declared method or attribute declaration, or

• an object declaration.

Within an interface body, a super reference is any occurrence of the expression super, unless it also occurs in the body of
a nested class or interface declaration. A statement or declaration contained in the interface body may not:

• pass a super reference as an argument of an instantiation, function invocation, or extends clause expression or as the
value of a value assignment or specification,

• use a super reference as an operand of any operator except the member selection operator, or the of operator as spe-
cified in §6.3.3 super,

• return a super reference, or

• narrow the type of a super reference using an assignability condition, as defined in §5.4.2 Assignability conditions.

4.4.2. Interface inheritance

An interface may satisfy any number of other interfaces, as defined in §3.3.3 Satisfaction.

shared interface List<Element>
satisfies Collection<Element> & Correspondence<Integer,Element>
given Element satisfies Object {

...
}

Every type listed in the satisfies clause must be an interface. An interface may not satisfy the same interface twice (not
even with distinct type arguments).

Note: this second restriction is not strictly necessary. In fact, satisfies List<One>&List<Two> means the same thing as
satisfies List<One&Two>, and the compiler already needs to be able to figure that out when it comes to multiple instan-
tiations of the same interface inherited indirectly. Still, the restriction seems harmless enough.

The interface is a subtype of every type listed in the satisfies clause. The interface is also a subtype of the type Object

defined in ceylon.language.

An interface inherits all members (methods, attributes and member types) of every supertype. That is, every member of
every supertype of the interface is also a member of the interface. Furthermore, the interface inherits all nested types

Declarations

Project Ceylon: 1.2 51

(interfaces and abstract classes) of every supertype.

The schema of the inherited members is formed by substituting type arguments specified in the satisfies clause.

An interface that satisfies a nested interface must be a member of the type that declares the nested interface or of a subtype
of the type that declares the nested interface.

A user-defined interface may not satisfy the interface Callable defined in ceylon.language nor directly satisfy the inter-
face ConstrainedAnnotation defined in ceylon.language.

4.4.3. Sealed interfaces

A toplevel or nested interface may be annotated sealed and is called a sealed interface.

An interface annotated sealed may not be satisfied by a class or interface outside the module in which it is defined.

4.4.4. Enumerated interfaces

An interface declaration may enumerate a list of cases of the interface, as defined in §3.4.2 Cases.

shared interface Node<Element>
of Root<Element> | Branch<Element> | Leaf<Element> { ... }

The cases may be interfaces, classes, or toplevel anonymous classes. A case may be an abstract class. Each case must be
a direct subtype of the interface type. An interface may not be a case of itself. An interface declaration may not list the
same case twice.

If an interface has an of clause, then every interface or class which directly inherits the interface must occur as exactly one
of the enumerated cases of the interface. Furthermore, any interface or class which indirectly inherits the interface must in-
herit exactly one of the enumerated cases of the interface.

4.4.5. Interface aliases

An interface alias is an interface declaration which specifies another type.

TypeSpecifier: "=>" Type

The specified type must be an interface type, that is, a reference to an interface with no type parameters or an instantiation
of a generic interface, and is called the aliased type.

An interface alias simply assigns an alternative name to the aliased type. A reference to the alias may occur anywhere a
reference to an interface may occur.

shared interface PeopleByName => Map<String,Person>;

interface Compare<Value> => Comparison(Value,Value);

If the aliased interface is a parameterized type, the aliased type must explicitly specify type arguments.

A class or interface may satisfy an interface alias, in which case, the class or interface inherits the aliased interface type.

Interface aliases are not reified types. The metamodel reference for an interface alias type—for example,
PeopleByName—returns the metamodel object for the aliased interface—in this case, Map<String,Person>, as specified in
§8.1.2 Type argument reification.

4.4.6. Dynamic interfaces

A dynamic interface is an interface declared with the keyword dynamic. Dynamic interfaces may be used to model the type
of objects defined in dynamically typed native code.

Every declaration nested inside a dynamic interface must be declared formal. A dynamic interface may not satisfy any in-
terface that is not also a dynamic interface.

Declarations

Project Ceylon: 1.2 52

Within a dynamic block, defined in §5.3.5 Dynamic blocks, assignment of a value with no Ceylon type to a dynamic inter-
face type does not result in an AssertionError, as defined in §8.3.6 Dynamic type checking. Instead, the value is coerced
to the dynamic interface type.

4.5. Classes

A class is a stateful, instantiable type. It is a type schema, together with implementation details of the members of the type.

ClassDeclaration: Annotations ClassHeader (ClassBody | ClassSpecifier ";")

An ordinary class declaration may specify, optionally, a list of parameters required to instantiate the type, and, also option-
ally, a list of type parameters. A class declaration may have a superclass, a list of interfaces it satisfies, a self type or an
enumerated list of cases, and/or a list of type constraints.

ClassHeader: "class" TypeName TypeParameters? Parameters? ClassInheritance TypeConstraints?

ClassInheritance: CaseTypes? ExtendedType? SatisfiedTypes?

To obtain an instance of a class, it is necessary to instantiate the class, or a subclass of the class.

The body of a class contains:

• member (method, attribute, and member class) declarations,

• nested interface, type alias, and abstract class declarations, and

• instance initialization code and, if the class does not have a parameter list, constructors.

ClassBody: "{" (Declaration | Statement | ConstructorDeclaration)* "}"

The body of a class may contain executable code.

shared class Counter(Integer initialCount=0) {

variable Integer n = initialCount;

print("Initial count: ``n``");

shared Integer count => n;

shared void increment() {
n++;
print("Count: ``n``");

}

}

A non-abstract nested class declaration is called a member class of the class. A nested interface or abstract class de-
claration is not part of the schema of the class type, and is therefore not considered a member of the class.

A class is not required to have a separate nested constructor declaration. Instead, the body of the class may itself declare its
initializer parameters. An initializer parameter may be used anywhere in the class body, including in method and attribute
definitions.

shared class Key(Lock lock) {
shared void lock() {

lock.engage(this);
print("Locked.");

}
shared void unlock() {

lock.disengage(this);
print("Unlocked.");

}
shared Boolean locked => lock.engaged;

}

An initializer parameter may be shared.

Declarations

Project Ceylon: 1.2 53

shared class Point(shared Float x, shared Float y) { ... }

shared class Counter(count=0) {
shared variable Integer count;
shared void increment() => count++;

}

If a class does not specify an initializer parameter list, it must have at least one shared constructor, as defined below in
§4.9 Constructors.

4.5.1. Callable type of a class

The callable type of a class with an initializer parameter list captures the type and initializer parameter types of the class.
The callable type is T(*P), where T is the applied type formed by the class with its own type parameters as type arguments,
and P is the type of the initializer parameter list of the class.

The callable type of a class with a default constructor is the callable type of the default constructor.

A class with no initializer parameter list and no default constructor does not have a callable type.

An abstract class is not callable, except from the extends clause of a subclass, or the class specifier of a class alias.

4.5.2. Initializer section

The initial part of the body of a class is called the initializer of the class and contains a mix of declarations, statements, and
control structures. The initializer is executed every time the class is instantiated. If the class does not have an initializer
parameter list, the initializer section may include one or more constructor declarations, as defined in §4.9 Constructors.

A class initializer is responsible for initializing the state of the new instance of the class, before a reference to the new in-
stance is available to clients.

shared abstract class Point() {
shared formal Float x;
shared formal Float y;

}

shared class DiagonalPoint(Float distance)
extends Point() {

value d = distance / 2^0.5;
x => d;
y => d;

"must have correct distance from origin"
assert (x^2 + y^2 == distance^2);

}

shared object origin
extends Point() {

x => 0.0;
y => 0.0;

}

Within a class initializer, a self reference to the instance being initialized is:

• any occurrence of the expression this, as defined in §6.3.1 this, or super, as defined in §6.3.3 super, unless it also oc-
curs in the body of a nested class or interface declaration,

• any occurrence of the expression outer, as defined in §6.3.2 outer, in the body of a class or interface declaration im-
mediately contained by the class,

• any reference to an anononymous class that inherits the class, or, if the class is an anonymous class, to the anonymous
class itself, or

• any reference to a value constructor of the class or of a class which inherits the class.

Declarations

Project Ceylon: 1.2 54

A statement or declaration contained in the initializer of a class may not evaluate an attribute, invoke a method, or instanti-
ate a member class upon the instance being initialized, including upon a self reference to the instance being initialized, if
the attribute, method, or member class:

• occurs later in the body of the class,

• is annotated formal or default, or

• is inherited from an interface or superclass, and is not refined by a declaration occurring earlier in the body of the class.

A member class contained in the initializer of a class may not extend a member or nested class of an interface or super-
class of the class.

Furthermore, a statement or declaration contained in the initializer of a class may not:

• pass a self reference to the instance being initialized as an argument of an instantiation, function invocation, or ex-

tends clause expression or as the value of a value assignment or specification,

• use a self reference to the instance being initialized as an operand of any operator except the member selection operat-
or, or the of operator,

• return a self reference to the instance being initialized, or

• narrow the type of a self reference to the instance being initialized using an assignability condition, as defined in §5.4.2
Assignability conditions.

Nor may the class pass a self reference to the instance being initialized as an argument of its own extends clause expres-
sion, if any.

As a special exception to these rules, a statement contained in an initializer may assign a self-reference to the instance be-
ing initialized to a reference annotated late.

For example, the following code fragments are not legal:

class Graph() {
OpenList<Node> nodes = ArrayList<Node>();
class Node() {

nodes.add(this); //error: self reference in initializer
}

}

class Graph() {
class Node() {}
Node createNode() {

Node node = Node();
nodes.add(node); //error: forward reference in initializer
return node;

}
OpenList<Node> nodes = ArrayList<Node>();

}

But this code fragment is legal:

class Graph() {
OpenList<Node> nodes = ArrayList<Node>();
Node createNode() {

Node node = Node();
nodes.add(node);
return node;

}
class Node() {}

}

4.5.3. Declaration section

The remainder of the body of the class consists purely of declarations, similar to the body of an interface. The following
constructs may not occur sequentially in the declaration section:

Declarations

Project Ceylon: 1.2 55

• a statement or control structure, defined in §5.5 Control structures and assertions,

• a reference declaration, as defined below in §4.8.1 References,

• a constructor declaration, as defined below in §4.9 Constructors,

• a forward-declared function or value declaration not annotated late, as defined below in §4.7.5 Forward declaration of
functions and §4.8.5 Forward declaration of values,

• an object declaration with a non-empty initializer section, or

• an object declaration that directly extends a class other than Object or Basic in ceylon.language.

However, the declarations in this second section may freely use this and super, and may invoke any method, evaluate any
attribute, or instantiate any member class of the class or its superclasses.

Within the declaration section of a class body, a super reference is any occurrence of the expression super, unless it also
occurs in the body of a nested class or interface declaration. A statement or declaration contained in the declaration section
of a class body may not:

• pass a super reference as an argument of an instantiation, function invocation, or extends clause expression or as the
value of a value assignment or specification,

• use a super reference as an operand of any operator except the member selection operator, or the of operator as spe-
cified in §6.3.3 super,

• return a super reference, or

• narrow the type of a super reference using an assignability condition, as defined in §5.4.2 Assignability conditions.

4.5.4. Class inheritance

A class may extend another class, as defined in §3.3.2 Extension.

shared class Customer(Name name, Organization? org = null)
extends Person(name, org) {

...
}

The class is a subtype of the type specified by the extends clause. If a class does not explicitly specify a superclass using
extends, its superclass is the class Basic defined in ceylon.language.

A class may satisfy any number of interfaces, as defined in §3.3.3 Satisfaction.

class Token()
extends Datetime()
satisfies Comparable<Token> & Identifier {

...
}

The class is a subtype of every type listed in the satisfies clause. A class may not satisfy the same interface twice (not
even with distinct type arguments).

A class inherits all members (methods, attributes, and member types) of every supertype. That is, every member of every
supertype of the class is also a member of the class. Furthermore, the class inherits all nested types (interfaces and ab-

stract classes) of every supertype.

Unless the class is declared abstract or formal, the class:

• must declare or inherit a member that refines each formal member of every interface it satisfies directly or indirectly,
and

• must declare or inherit a member that refines each formal member of its superclass.

The schema of the inherited members is formed by substituting type arguments specified in the extends or satisfies

Declarations

Project Ceylon: 1.2 56

clause.

A subclass with an initializer parameter list must pass arguments to each superclass initialization parameter or callable
constructor parameter in the extends clause. A subclass with no initializer parameter list may not pass arguments in the
extends clause.

shared class SpecialKey1()
extends Key(SpecialLock()) {

...
}

shared class SpecialKey2(Lock lock)
extends Key(lock) {

...
}

A subclass of a nested class must be a member of the type that declares the nested class or of a subtype of the type that de-
clares the nested class. A class that satisfies a nested interface must be a member of the type that declares the nested inter-
face or of a subtype of the type that declares the nested interface.

A user-defined class may not satisfy the interface Callable defined in ceylon.language nor directly satisfy the interface
ConstrainedAnnotation defined in ceylon.language.

4.5.5. Abstract, final, sealed, formal, and default classes

A toplevel or nested class may be annotated abstract and is called an abstract class.

A toplevel or nested class may be annotated final and is called a final class.

A toplevel or nested class may be annotated sealed and is called a sealed class.

If a class annotated shared is a member of a containing class or interface, then the class may be annotated formal and is
called a formal member class, or, sometimes, an abstract member class.

An abstract class or formal member class may have formal members.

An abstract class may not be instantiated.

A formal member class may be instantiated.

A class which is not annotated formal or abstract is called a concrete class.

A concrete class may not have formal members.

A class annotated final must be a concrete class.

A class annotated final may not have default members.

If a concrete class annotated shared is a member of a containing class or interface, then the class may be annotated de-

fault and is called a default member class.

A toplevel class may not be annotated formal or default.

An un-shared class may not be annotated formal or default.

A class annotated sealed may not be instantiated or extended outside the module in which it is defined.

A class with no parameter list may not be annotated sealed.

A member class annotated sealed formal must belong to a sealed class or interface.

Note: a formal member class would be a reasonable syntax for declaring virtual types. We think we don't need virtual
types because they don't offer much that type parameters don't already provide. For example:

shared formal class Buffer(Character...)
satisfies Sequence<Character>;

Declarations

Project Ceylon: 1.2 57

4.5.6. Member class refinement

Member class refinement is a unique feature of Ceylon, akin to the "factory method" pattern of many other languages.

• A member class annotated formal or default may be refined by any class or interface which is a subtype of the class
or interface which declares the member class.

• A member class annotated formal must be refined by every concrete class which is a subtype of the class or interface
that declares the member class, unless the class inherits a concrete member class from a superclass that refines the
formal member class.

A member class of a subtype refines a member class of a supertype if the member class of the supertype is shared and the
two classes have the same name. The first class is called the refining class, and the second class is called the refined class.

Then, given the refined realization of the class it refines, as defined in §3.7.7 Realizations, and, after substituting the type
parameters of the refined class for the type parameters of the refining class in the schema of the refining class, the refining
class must:

• have the same number of type parameters as the refined schema, and for each type parameter the intersection of its up-
per bounds must be a supertype of the intersection of the upper bounds of the corresponding type parameter of the real-
ization,

• have a parameter list with the same signature as the realization, and

• directly or indirectly extend the class it refines.

Furthermore:

• the refining class must be annotated actual, and

• the refined class must be annotated formal or default.

If a member class is annotated actual, it must refine some member class of a supertype.

A member class may not, directly or indirectly, refine two different member classes not themselves annotated actual.

Then instantiation of the member class is polymorphic, and the actual subtype instantiated depends upon the concrete type
of the containing class instance.

shared abstract class Reader() {
shared formal class Buffer(Character* chars)

satisfies Character[] {}
...

}

shared class FileReader(File file)
extends Reader() {

shared actual class Buffer(Character* chars)
extends super.Buffer(chars) {

...
}
...

}

All of the above rules apply equally to member classes which are aliases.

shared abstract class Reader() {
shared formal class Buffer(Character* chars) => AbstractBuffer(*chars);
...

}

shared class FileReader(File file)
extends Reader() {

shared actual class Buffer(Character* chars) => FileBuffer(*chars);
...

}

Declarations

Project Ceylon: 1.2 58

4.5.7. Anonymous classes

An object or anonymous class declaration is a compact way to define a class with a single value constructor, together
with a getter aliasing this value constructor.

ObjectDeclaration: Annotations ObjectHeader ClassBody

An object has an initial lowercase identifier. An object declaration does not specify parameters or type parameters.

ObjectHeader: "object" MemberName ObjectInheritance

ObjectInheritance: ExtendedType? SatisfiedTypes?

An object declaration specifies the name of the value and the schema, supertypes, and implementation of the class. It does
not explicitly specify a type name. Instead, the type name is formed by prefixing the value name with \I, turning it into an
initial uppercase identifier, as specified by §2.3 Identifiers and keywords.

An object class:

• satisfies and/or extends the types specified by the object declaration,

• has no initializer parameter list,

• has a single shared value constructor with the same name as the object, with an empty body and the same extends

clause as the object declaration, which is the single enumerated case of the class,

• is shared, if and only if the object is annotated shared,

• is neither abstract nor formal,

• is implicitly final.

Therefore, members of an object may not be declared formal nor default.

The body of the object declaration is the body of the class.

This class never appears in types inferred by local declaration type inference or generic type argument inference. Instead,
occurrences of the class are replaced with the intersection of the extended type with all satisfied types.

An object value is a getter, as defined in §4.8.2 Getters, that simply returns a reference to the value constructor of the
class. The value:

• is shared, if and only if the object is annotated shared,

• may refine a member of a supertype, if and only if the object is annotated actual, and

• is neither default nor formal.

Therefore, the object may not be annotated default nor formal.

Annotations applying to an object declaration are considered annotations of the object value, and are accessible via its
ValueDeclaration, as defined in §6.10 Reference expressions.

The following declaration:

shared my object red extends Color('FF0000') {
string => "Red";

}

Is exactly equivalent to:

shared final class \Ired of red extends Color {
shared new red extends Color('FF0000') {}
string => "Red";

}

Declarations

Project Ceylon: 1.2 59

shared my \Ired red => \Ired.red;

Where \Ired is the type name assigned by the compiler.

shared object sql {
shared String escape(String string) { ... }

}

...

String escapedSearchString = sql.escape(searchString);

4.5.8. Enumerated classes

A class declaration may enumerate a list of cases of the class, as defined in §3.4.2 Cases.

• For an abstract class, the cases may be classes or toplevel anonymous classes. Each case must be a direct subclass of
the enumerated class. A case may itself be an abstract class.

• For a non-abstract toplevel class, the cases must be value constructors of the class.

The cases listed in the of clause must exhaust every means by which an instance of the class may be instantiated:

• if an abstract class has an of clause, then every class that directly extends the class must occur as exactly one of the
enumerated cases of the class listed in the of clause and, furthermore, every class that indirectly inherits the abstract

class must inherit one of the enumerated cases of the class, or

• if a non-abstract class has an of clause, then every non-partial constructor of the class must occur as exactly one of
the enumerated cases of the class listed in the of clause.

shared abstract class Boolean()
of true | false {}

shared object true extends Boolean() { string => "true"; }
shared object false extends Boolean() { string => "false"; }

shared abstract class Node<Element>(String name)
of Branch<Element> | Leaf<Element> { ... }

shared class Leaf<Element>(String name, Element element)
extends Node<Element>(name) { ... }

shared class Branch<Element>(String name, Node<Element> left, Node<Element> right)
extends Node<Element>(name) { ... }

shared class Status of enabled | disabled {
shared actual String string;
shared new enabled { string => "enabled"; }
shared new disabled { string => "disabled"; }

}

A non-abstract class with an initializer parameter list or a callable constructor may not specify an of clause.

A non-abstract, non-toplevel class may not specify an of clause.

A class declaration may not list the same case twice.

Note: in a future release of the language, we may introduce an abbreviated syntax like:

shared abstract class Boolean(shared actual String string)
of object true ("true") |

object false ("false") {}

4.5.9. Class aliases

A class alias is a class declaration which specifies a reference to a class or callable constructor of a class, followed by a
positional argument list, as defined in §6.6.7 Positional argument lists.

Declarations

Project Ceylon: 1.2 60

ClassSpecifier: "=>" (Extension | Construction)

The specification of the class or callable constructor is treated as a value expression, as in §3.3.2 Extension. The type of
this value expression must be a class type, that is, a reference to a class with no type parameters or an instantiation of a
generic class, and is called the aliased type.

A class alias simply assigns an alternative name to the aliased type. A reference to the alias may occur anywhere a refer-
ence to a class may occur.

shared class People(Person* people) => ArrayList<Person>(*people);

class Named<Value>(String name, Value val)
given Value satisfies Object
=> Entry<String,Value>(name, val);

Arguments to the initializer parameters of the aliased class must be specified.

If the aliased class is a parameterized type, the aliased type must explicitly specify type arguments.

The type arguments may not be inferred from the initializer arguments.

Note: currently the compiler imposes a restriction that the callable type of the aliased class must be assignable to the
callable type of the class alias. This restriction will be removed in future.

If a toplevel class alias or un-shared class alias aliases an abstract class, the alias must be annotated abstract, and it
may not be directly instantiated.

If a shared class alias nested inside the body of a class or interface aliases an abstract class, the alias must be annotated
abstract or formal. If it is annotated formal, it is considered a member class of the containing class or interface. If it is
annotated abstract, it is considered an abstract nested class of the containing class or interface.

A class alias may not alias a partial constructor. A shared class alias may not alias an un-shared constructor.

A class may extend a class alias, in which case, the class inherits the aliased class type.

Class aliases are not reified types. The metamodel reference for a class alias type—for example, People—returns the
metamodel object for the aliased class—in this case, ArrayList<Person>, as specified in §8.1.2 Type argument reification.

4.6. Type aliases

A type alias declaration assigns a name to an arbitrary type expression, usually involving a union and/or intersection of
types.

TypeAliasDeclaration: Annotations AliasHeader TypeSpecifier ";"

AliasHeader: "alias" TypeName TypeParameters? TypeConstraints?

The specified type may be any kind of type. A reference to the alias may be used anywhere a union or intersection type
may be used. The alias may not appear in an extends or satisfies clause. The alias may not be instantiated.

shared alias Number => Integer|Float|Decimal|Whole;

alias ListLike<Value> => List<Value>|Map<Integer,Value>;

alias Numbered<Num,Value> given Num satisfies Ordinal<Num>
=> Correspondence<Num,Value>;

Note: class, interface, and type aliases use a "fat arrow" lazy specifier => instead of = because the type parameters de-
clared on the left of the specifier are in scope on the right of the specifier. An alias is in general a type constructor.

A class or interface may not extend or satisfy a type alias.

Type aliases are not reified types. The metamodel reference for a type alias type—for example, Number—returns the

Declarations

Project Ceylon: 1.2 61

metamodel object for the aliased type—in this case, Integer|Float|Decimal|Whole, as specified in §8.1.2 Type argument
reification.

4.7. Functions

A function is a callable block of code. A function may have parameters and may return a value. If a function belongs to a
type, it is called a method.

FunctionDeclaration: Annotations FunctionHeader (Block | LazySpecifier? ";")

All function declarations specify the function name, one or more parameter lists, and, optionally, a list of type parameters.
A generic function declaration may have a list of type constraints.

FunctionHeader: FunctionPrefix MemberName TypeParameters? Parameters+ TypeConstraints?

A function declaration may specify a type, called the return type, to which the values the method returns are assignable, or
it may specify that the function is a void function—a function which does not return a useful value, and only useful for its
effect.

FunctionPrefix: Type | "function" | "dynamic" | "void"

Instead of an explicit return type, a function may be declared using:

• the keyword dynamic, indicating that it is a partially typed declaration with no return type, or

• the keyword function, indicating that its return type is inferred.

A function implementation may be specified using either:

• a block of code, or

• a lazy specifier.

If a function is a parameter, it must not specify any implementation.

The return type of a void function is considered to be Anything defined in ceylon.language.

Note: a void function with a concrete implementation returns the value null. However, since a void function may be a
reference to a non-void function, or a method refined by a non-void function, this behavior can not be depended upon and
is not implied by the semantics of void.

4.7.1. Callable type of a function

The callable type of a function captures the return type and parameter types of the function.

• The callable type of a function with a single parameter list is R(*P) where R is the return type of the method, or Any-
thing if the function is void, and P is the type of the parameter list.

• The callable type of a function with multiple parameter lists is O(*P), where O is the callable type of a method pro-
duced by eliminating the first parameter list, and P is the type of the first parameter list of the function.

Note: the identification of void with Anything instead of Null or some other unit type will probably be contraversial. This
approach allows a non-void method to refine a void method or a non-void function to be assigned to a void functional
parameter. Thus, we avoid rejecting perfectly well-typed code.

4.7.2. Functions with blocks

A function implementation may be a block.

• If the function is declared void, the block may not contain a return directive that specifies an expression.

Declarations

Project Ceylon: 1.2 62

• Otherwise, every conditional execution path of the block must end in a return directive that specifies an expression
assignable to the return type of the function, or in a throw directive, as specified in §5.3.6 Definite return.

shared Integer add(Integer x, Integer y) {
return x + y;

}

shared void printAll(Object* objects) {
for (obj in objects) {

print(obj);
}

}

shared void addEntry(Key->Item entry) {
map.put(entry.key,entry.item);

}

shared Set<Element> singleton<Element>(Element element)
given Element satisfies Comparable<Element> {

return TreeSet { element };
}

4.7.3. Functions with specifiers

Alternatively, a function implementation may be a lazy specifier, that is, an expression specified using =>. The type of the
specified expression must be assignable to the return type of the function. In the case of a function declared void, the ex-
pression must be a legal statement, as defined by §5.3.1 Expression statements.

shared Integer add(Integer x, Integer y) => x + y;

shared void addEntry(Key->Item entry) => map.put(entry.key,entry.item);

shared Set<Element> singleton<Element>(Element element)
given Element satisfies Comparable<Element>

=> TreeSet { element };

4.7.4. Function return type inference

A non-void, un-shared function with a block or lazy specifier may be declared using the keyword function in place of
the explicit return type declaration. Then the function return type is inferred:

• if the function implementation is a lazy specifier, then the return type of the function is the type of the specified ex-
pression,

• if the function implementation is a block, and the function contains no return directive, then the return type of the
method is Nothing (this is the case where the method always terminates in a throw directive), or,

• otherwise, the return type of the function is the union of all returned expression types of return directives of the meth-
od body.

This function has inferred return type Integer.

function add(Integer x, Integer y) => x + y;

This function has inferred return type Float|Integer.

function unit(Boolean floating) {
if (floating) {

return 1.0;
}
else {

return 1;
}

}

Declarations

Project Ceylon: 1.2 63

This function has inferred return type Nothing.

function die() {
throw;

}

4.7.5. Forward declaration of functions

The declaration of a function may be separated from the specification of its implementation. If a function declaration does
not have a lazy specifier, or a block, and is not annotated formal, and is not a parameter, it is a forward-declared function.

A forward-declared function may later be specified using a specification statement, as defined in §5.3.3 Specification
statements. The specification statement for a forward-declared function may be:

• a lazy specification statement with parameter lists of exactly the same types as the function, and a specified expression
assignable to the declared type of the function, or

• an ordinary specification statement with a specified expression assignable to the callable type of the function.

Comparison order(String x, String y);
if (reverseOrder) {

order(String x, String y) => y<=>x;
}
else {

order(String x, String y) => x<=>y;
}

Comparison format(Integer x);
switch (base)
case (decimal) {

format = (Integer i) => i.string;
}
case (binary) {

format = formatBin;
}
case (hexadecimal) {

format = formatHex;
}

Every forward-declared function must explicitly specify a type. It may not be declared using the keyword function.

A toplevel function may not be forward-declared. A method of an interface may not be forward-declared. A method annot-
ated default may not be forward-declared.

If a shared method is forward-declared, its implementation must be definitely specified by all conditional paths in the
class initializer.

4.7.6. Functions with multiple parameter lists

A function may declare multiple lists of parameters. A function with more than one parameter list returns instances of
Callable in ceylon.language when invoked. Every function with multiple parameter lists is exactly equivalent to a func-
tion with a single parameter list that returns an anonymous function.

This function declaration:

Boolean greaterThan<Element>(Element val)(Element element)
given Element satisfies Comparable<Element> =>

element>val;

is equivalent to the following:

Boolean(Element) greaterThan<Element>(Element val)
given Element satisfies Comparable<Element> =>

(Element element) => element>val;

For a function with n parameter lists, there are n-1 inferred anonymous functions. The ith inferred function:

Declarations

Project Ceylon: 1.2 64

• has a callable type formed by eliminating the first i parameter lists of the original declared function,

• has the i+1th parameter list of the original declared function, and

• if i<n, returns the i+1th inferred function, or

• otherwise, if i==n, has the implementation of the original declared function.

Then the original function returns the first inferred anonymous function.

This method declaration:

function fullName(String firstName)(String middleName)(String lastName)
=> firstName + " " + middleName + " " + lastName;

Is equivalent to:

function fullName(String firstName) =>
(String middleName) =>

(String lastName) =>
firstName + " " + middleName + " " + lastName;

4.7.7. Formal and default methods

If a function declaration does not have a lazy specifier, or a block, and is annotated shared, and is a method of either:

• an interface, or

• a class annotated abstract or formal,

then the function declaration may be annotated formal, and is called a formal method, or, sometimes, an abstract method.

shared formal Item? get(Key key);

A method which is not annotated formal is called a concrete method.

If a concrete method is annotated shared, and is a member of a class or interface, then it may be annotated default and is
called a default method.

shared default void writeLine(String line) {
write(line);
write("\n");

}

A method annotated formal may not specify an implementation (a lazy specifier, or a block).

A method annotated default must specify an implementation (a lazy specifier, or a block), and may not be forward-de-
clared.

Every formal method must explicitly specify a type. It may not be declared using the keyword function.

A toplevel method may not be annotated formal or default.

An un-shared method may not be annotated formal or default.

4.7.8. Method refinement

Methods may be refined, just like in other object-oriented languages.

• A class or interface may refine any formal or default method it inherits, unless it inherits a non-formal non-default
method that refines the method.

• A concrete class must refine every formal method it inherits, unless it inherits a non-formal method that refines the
method.

Declarations

Project Ceylon: 1.2 65

A method of a subtype refines a method of a supertype if the method of the supertype is shared and the two methods have
the same name. The first method is called the refining method, and the second method is called the refined method.

Then, given the refined realization of the method it refines, as defined in §3.7.7 Realizations, and, after substituting the
type parameters of the refined method for the type parameters of the refining method in the schema of the refining method,
the refining method must:

• have the same number of type parameters as the refined schema, and for each type parameter the intersection of its up-
per bounds must be a supertype of the intersection of the upper bounds of the corresponding type parameter of the real-
ization,

• have the same number of parameter lists, with the same signatures, as the realization, and

• have a return type that is assignable to the return type of the realization, or

• if it has no return type, the refined method must also have no return type.

Note: in a future release of the language, we would like to support contravariant refinement of method parameter types.

Furthermore:

• the refining method must be annotated actual, and

• the refined method must be annotated formal or default.

If a method is annotated actual, it must refine some method defined by a supertype.

A method may not, directly or indirectly, refine two different methods not themselves annotated actual.

Then invocation of the method is polymorphic, and the actual method invoked depends upon the concrete type of the class
instance.

shared abstract class AbstractSquareRooter() {
shared formal Float squareRoot(Float x);

}

class ConcreteSquareRooter()
extends AbstractSquareRooter() {

shared actual Float squareRoot(Float x) => x^0.5;
}

Alternatively, a subtype may refine a method using a specification statement, as defined in §5.3.3 Specification statements.
The specification statement must satisfy the requirements of §4.7.5 Forward declaration of functions above for specifica-
tion of a forward-declared function.

class ConcreteSquareRooter()
extends AbstractSquareRooter() {

squareRoot(Float x) => x^0.5;
}

4.8. Values

There are two basic kinds of value:

• A reference defines state. It has a persistent value, determined at the moment it is specified or assigned.

• A getter defines how a value is evaluated. It is defined using a block or lazy specifier, which is executed every time the
value is evaluated. A getter may have a matching setter.

If a value belongs to a type, it is called an attribute.

ValueDeclaration: Annotations ValueHeader (Block | (Specifier | LazySpecifier)? ";")

All value declarations specify the value name.

Declarations

Project Ceylon: 1.2 66

ValueHeader: ValuePrefix MemberName

A value declaration may specify a type.

ValuePrefix: Type | "value" | "dynamic"

Instead of an explicit return type, a value may be declared using:

• the keyword dynamic, indicating that it is a partially typed declaration with no type, or

• the keyword value, indicating that its type is inferred.

Note: syntactically a value declaration looks like a function declaration with zero parameter lists. It is often helpful, in
thinking about the syntax and semantics of Ceylon, to take the perspective that a value is a function with zero parameter
lists, or, alternatively, that a function is a value of type Callable.

A value may be variable, in which case it may be freely assigned using the assignment and compound assignment operat-
ors defined in §6.8 Operators. This is the case for a reference annotated variable, or for a getter with a matching setter.

4.8.1. References

The lifecycle and scope of the persistent value of a reference depends upon where the reference declaration occurs:

• A toplevel reference represents global state associated with the lifecyle of a module, as defined by §8.2.10 Initializa-
tion of toplevel references.

• A reference declared directly inside the body of a class represents a persistent value associated with every instance of
the class, as defined by §8.2.3 Current instance of a class or interface. Repeated evaluation of the attribute of a particu-
lar instance of the class produces the same result until the attribute of the instance is assigned a new value.

• A reference declared inside a block represents state associated with a frame, that is, with a particular execution of the
containing block of code, as defined in §8.2.4 Current frame of a block.

The persistent value of a reference may be specified or initialized as part of the declaration of the reference, or via a later
specification statement, as defined in §5.3.3 Specification statements, or assignment expression, as defined in §6.8 Operat-
ors, or, if it is a parameter, by an argument to an invocation expression, as defined in §6.6 Invocation expressions.

A reference annotated variable has a persistent value that can be assigned multiple times. A reference not annotated
variable has a persistent value that can be specified exactly once and not subsequently modified.

variable Integer count = 0;

shared Decimal pi = calculatePi();

shared Integer[] evenDigits = [0,2,4,6,8];

A reference declaration may have a specifier which specifies its persistent value or, in the case of a variable reference, its
initial persistent value. The type of the specified expression must be assignable to the type of the reference.

If the specified expression has no type, and the declaration occurs within a dynamic block, then the specification is not
type-checked at compile time.

If a reference is a parameter, it must not specify a persistent value.

A reference belonging to a class may be annotated late, in which case the initializer of the class is not required to initial-
ize its persistent value. Furthermore, a self-reference to an instance being initialized may be assigned to the reference.

A reference annotated late may not be initialized or assigned a value by the class initializer. A parameter may not be an-
notated late. A reference not belonging to a class may not be annotated late.

If a class declares or inherits a variable reference, it must (directly or indirectly) extend the class Basic defined in
ceylon.language.

Declarations

Project Ceylon: 1.2 67

4.8.2. Getters

A getter implementation may be a block.

shared Float total {
variable Float sum = 0.0;
for (li in lineItems) {

sum += li.amount;
}
return sum;

}

Every conditional execution path of the block must end in a return directive that specifies an expression assignable to the
type of the value, or in a throw directive, as specified in §5.3.6 Definite return.

Alternatively, a getter implementation may be a lazy specifier, that is, an expression specified using =>. The type of the
specified expression must be assignable to the type of the value.

Name name => Name(firstName, initial, lastName);

4.8.3. Setters

A setter defines how the value of a getter is assigned.

SetterDeclaration: Annotations "assign" MemberName (Block | LazySpecifier)

The name specified in a setter declaration must be the name of a matching getter that directly occurs earlier in the body
containing the setter declaration. If a getter has a setter, we say that the value is variable.

Within the body of the setter, a value reference to the getter evaluates to the value being assigned.

A setter implementation may be a block. The block may not contain a return directive that specifies an expression.

shared String name { return join(firstName, lastName); }
assign name { firstName=first(name); lastName=last(name); }

Alternatively, a setter implementation may be a lazy specifier. The specified expression must be a legal statement.

shared String name => join(n[0], n[1]);
assign name => n = [first(name), last(name)];

A setter may not be annotated shared, default or actual. The visibility and refinement modifiers of an attribute with a
setter are specified by annotating the matching getter.

4.8.4. Value type inference

An un-shared value with a block, specifier, or lazy specifier may be declared using the keyword value in place of the ex-
plicit type declaration. Then the value's type is inferred:

• if the value is a reference with a specifier, then the type of the value is the type of the specified expression,

• if the value is a getter, and the getter implementation is a lazy specifier, then the type of the value is the type of the spe-
cified expression,

• if the value is a getter, and the getter implementation is a block, and the getter contains no return directive, then the
type of the value is Nothing (this is the case where the getter always terminates in a throw directive), or

• otherwise, the type of the value is the union of all returned expression types of return directives of the getter body.

value names = List<String>();

variable value count = 0;

value name => Name(firstName, initial, lastName);

Declarations

Project Ceylon: 1.2 68

4.8.5. Forward declaration of values

The declaration of a reference may be separated from the specification or initialization of its persistent value. The declara-
tion of a getter may be separated from the specification of its implementation. If a value declaration does not have a spe-
cifier, lazy specifier, or a block, and is not annotated formal, it is a forward-declared value.

A forward-declared value may later be specified using a specification statement, as defined in §5.3.3 Specification state-
ments.

• The specification statement for a forward-declared getter is a lazy specification statement with no parameter list, and a
specified expression assignable to the type of the value.

• The specification statement for a forward-declared reference is an ordinary specification statement with a specified ex-
pression assignable to the type of the value.

String greeting;
switch (language)
case (en) {

greeting = "Hello";
}
case (es) {

greeting = "Hola";
}
else {

throw LanguageNotSupported();
}
print(greeting);

Every forward-declared value must explicitly specify a type. It may not be declared using the keyword value.

A toplevel value may not be forward-declared. An attribute of an interface may not be forward-declared. An attribute an-
notated default may not be forward-declared.

A forward-declared getter may not have a setter.

If a shared value is forward-declared, its implementation must be definitely specified by all conditional paths in the class
initializer.

4.8.6. Formal and default attributes

If a value declaration does not have a specifier, lazy specifier, or a block, and is annotated shared, and is a member of
either:

• an interface, or

• a class annotated abstract or formal,

then the value declaration may be annotated formal, and is called a formal attribute, or, sometimes, an abstract attribute.

shared formal variable String firstName;

An attribute which is not annotated formal is called a concrete attribute.

If a concrete attribute is annotated shared, and is a member of a class or interface, then it may be annotated default and is
called a default attribute.

shared default String greeting = "Hello";

An attribute annotated formal may not specify an implementation (a specifier, lazy specifier, or a block). Nor may there be
a setter for a formal attribute.

An attribute annotated default must specify an implementation (a specifier, lazy specifier, or a block), and may not be
forward-declared.

Every formal attribute must explicitly specify a type. It may not be declared using the keyword function.

Declarations

Project Ceylon: 1.2 69

A toplevel attribute may not be annotated formal or default.

An un-shared attribute may not be annotated formal or default.

4.8.7. Attribute refinement

Ceylon allows attributes to be refined, just like methods. This helps eliminate the need for Java-style getter and setter
methods.

• A class or interface may refine any formal or default attribute it inherits, unless it inherits a non-formal non-default
attribute that refines the attribute.

• A concrete class must refine every formal attribute it inherits, unless it inherits a non-formal attribute that refines the
attribute.

Any non-variable attribute may be refined by a reference or getter. A variable attribute may be refined by a variable

refernce or by a getter and setter pair.

TODO: are you allowed to refine a getter or setter without also refining its matching setter or getter?

An attribute of a subtype refines an attribute of a supertype if the attribute of the supertype is shared and the two attributes
have the same name. The first attribute is called the refining attribute, and the second attribute is called the refined attrib-
ute.

Then, given the refined realization of the attribute it refines, as defined in §3.7.7 Realizations, the refining attribute must:

• be variable, if the attribute it refines is variable, and

• have exactly the same type as the realization, if the attribute it refines is variable,

• have a type that is assignable to the type of the refined schema, if the attribute it refines is not variable, or

• if it has no type, the refined attribute must also have no type.

Furthermore:

• the refining attribute must be annotated actual, and

• the refined attribute must be annotated formal or default.

If an attribute is annotated actual, it must refine some attribute defined by a supertype.

An attribute may not, directly or indirectly, refine two different attributes not themselves annotated actual.

A non-variable attribute may be refined by a variable attribute.

TODO: Is that really allowed? It could break the superclass. Should we say that you are allowed to do it when you refine
an interface attribute, but not when you refine a superclass attribute?

Then evaluation and assignment of the attribute is polymorphic, and the actual attribute evaluated or assigned depends
upon the concrete type of the class instance.

shared abstract class AbstractPi() {
shared formal Float pi;

}

class ConcretePi()
extends AbstractPi() {

shared actual Float pi = calculatePi();
}

Alternatively, a subtype may refine an attribute using a specification statement, as defined in §5.3.3 Specification state-
ments. The specification statement must satisfy the requirements of §4.8.5 Forward declaration of values above for spe-
cification of a forward-declared attribute.

Declarations

Project Ceylon: 1.2 70

class ConcretePi()
extends AbstractPi() {

pi = calculatePi();
}

4.9. Constructors

A constructor is a callable block of code that produces a new instance of the class to which the constructor belongs. Every
constructor must occur directly in the initializer section of a class. A constructor may have parameters. Every constructor
implementation is a block of code.

ConstructorDeclaration: Annotations ConstructorHeader Block

The are two basic kinds of constructor:

• A callable constructor declaration specifies the constructor name, if any, and exactly one parameter list.

• A value constructor declaration specifies just the constructor name.

Any constructor declaration may, optionally, have an extends clause.

A constructor name must be an initial lowercase identifier.

ConstructorHeader: ValueConstructorHeader | CallableConstructorHeader

CallableConstructorHeader: "new" MemberName? Parameters ExtendedType?

ValueConstructorHeader: "new" MemberName ExtendedType?

If two constructors belong to the same class, then the constructors must have distinct names. A class may have at most one
constructor with no name.

If a constructor has no name, then the constructor is called the default constructor of the class to which it belongs. The de-
fault constructor is always a callable constructor.

Every default constructor must be annotated shared.

Note: from the point of view of a client, a class with a default constructor and no named constructors is indistinguishable
from a class with an initializer parameter list.

shared class Point {
shared Float x;
shared Float y;

shared new origin {
x = 0.0;
y = 0.0;

}
shared new cartesian(Float x, Float y) {

this.x = x;
this.y = y;

}
shared new polar(Float r, Float theta) {

this.x = r * cos(theta);
this.y = r * sin(theta);

}
shared new (Float x, Float y)

extends cartesian(x, y) {}

string => "(``x``, ``y``)";
}

A class with an initializer parameter list may not declare constructors.

A generic class may not declare value constructors.

A class nested directly inside an interface may not declare value constructors.

Declarations

Project Ceylon: 1.2 71

A member class annotated formal, default, or actual may not declare constructors.

Note: in a future release of the language, we might relax this restriction, and simply require that every actual class
provide a constructor with the same signature as the constructor of its superclass.

A constructor annotated sealed may not be invoked outside the module in which it is defined.

4.9.1. Callable type of a constructor

For a callable constructor, the callable type of the constructor captures the type of the class, and parameter types of the
constructor. The callable type is T(*P), where T is the applied type formed by the class with its own type parameters as
type arguments, and P is the type of the parameter list of the constructor.

A constructor of an abstract class is not callable, except from the extends clause of a subclass, or the class specifier of a
class alias.

A partial constructor is not callable, except from the extends clause of another constructor of the same class.

The type of a value constructor is simply T, where T is the class to which it belongs.

4.9.2. Partial constructors

A callable constructor annotated abstract is called a partial constructor.

A partial constructor may not be annotated shared.

A default constructor may not be annotated abstract.

A value constructor may not be annotated abstract.

4.9.3. Constructor delegation

Every constructor of any class which does not directly extend Basic defined in ceylon.language must explicitly delegate,
as defined in §3.3.2 Extension, to either:

• a different callable constructor of the same class, specifying arguments for the parameters of the constructor, or,

• a callable constructor of its immediate superclass, specifying arguments for the parameters of the superclass construct-
or, if the superclass declares constructors, or, otherwise

• the initializer of its immediate superclass, specifying arguments for the initializer parameters, if the superclass has an
initializer parameter list.

If the constructor of a class which directly extends Basic does not have an extends clause, the constructor implicitly del-
egates to the initializer of Basic.

Declarations

Project Ceylon: 1.2 72

Chapter 5. Statements, blocks, and control structures

Function, value, and class bodies contain procedural code that is executed when the function is invoked, the value evalu-
ated, or the class instantiated. The code contains expressions and control directives and is organized using blocks and con-
trol structures.

Note: the Ceylon language has a recursive block structure—statements and declarations that are syntactically valid in the
body of a toplevel declaration are, in general, also syntactically valid in the body of a nested declaration or of a control
structure, and vice-versa.

5.1. Block structure and references

A body is a block, defined in §5.3 Blocks and statements, class body, defined in §4.5 Classes, interface body, defined in
§4.4 Interfaces, or comprehension clause, defined in §6.6.6 Comprehensions. Every body (except for a comprehension
clause) is list of semicolon-delimited statements, control structures, and declarations, surrounded by braces. Some bodies
end in a control directive. Every program element in the list is said to directly occur in the body. A program element dir-
ectly occurs earlier than a second program element if both program elements directly occur in a body and the first program
element occurs (lexically) earlier in the list than the second program element.

A program element (indirectly) occurs in a body if:

• the program element directly occurs in the body, or

• the program element indirectly occurs inside the body of a declaration or control structure that occurs directly in the
body.

We sometimes say that the body contains the program element if the program element (indirectly) occurs in the body.

A program element (indirectly) occurs earlier than a second program element if:

• the two program elements both directly occur in the same body, and the second program element occurs after the first
program element, or

• the second program element indirectly occurs inside the body of a declaration or control structure, and the first pro-
gram element directly occurs earlier than the declaration or control structure.

Then we also say that the second program element (indirectly) occurs later than the first. The set of program elements that
occur later than a program element is sometimes called the lexical scope of the program element.

A program element sequentially occurs in a body if:

• the program element directly occurs in the body, or

• the program element sequentially occurs inside the body of a control structure or constructor that occurs directly in the
body.

A program element sequentially occurs earlier than a second program element if:

• the two program elements both directly occur in the same body, and the second program element occurs after the first
program element, or

• the second program element sequentially occurs inside the body of a control structure or constructor, and the first pro-
gram element directly occurs earlier than the control structure or constructor.

If a program element sequentially occurs earlier than a second program element, the sequence of statements from the first
program element to the second program element comprises:

• the sequence of statements that occur directly in the body in which the first program element directly occurs, beginning
from the first program element and ending with the second program element, if the second program element occurs dir-
ectly in the same body as the first program element, or

Project Ceylon: 1.2 73

• the sequence of statements that occur directly in the body in which the first program element directly occurs, beginning
from the first program element and ending with the control structure or constructor in whose body the second program
element sequentially occurs, followed by the sequence of statements from the first statement of the declaration whose
body contains the second program element to the second program element itself, otherwise.

5.1.1. Declaration name uniqueness

A program element is contained within the namespace of a declaration if either:

• the declaration is a toplevel declaration, and the program element is a toplevel declaration of the same package,

• the declaration directly occurs in a body, the program element occurs in the same body, and the declaration sequen-
tially occurs earlier than the program element,

• the declaration is a parameter or type parameter, and the program element sequentially occurs in the body of the para-
meterized declaration, or

• the program element is a control structure variable or iteration variable of a control structure that sequentially occurs in
the namespace of the declaration.

The namespace of a declaration may not contain a second declaration with the same name. For example, the following is
illegal:

function fun(Float number) {
if (number<0.0) {

Float number = 1.0; //error
...

}
...

}

As an exception to this rule, the namespace of a declaration annotated native may contain a second declaration with the
same name if:

• the second declaration has exactly the same schema, as defined in §3.2 Types,

• the second declaration is also annotated native, and

• the two native annotations have distinct arguments for the backend parameter.

A class or interface may not inherit a declaration with the same name as a declaration it contains unless either:

• the contained declaration directly or indirectly refines the inherited declaration,

• the contained declaration is not shared, or

• the inherited declaration is not shared.

A class or interface may not inherit two declarations with the same name unless either:

• the class or interface contains a declaration that directly or indirectly refines both the inherited declarations (in which
case both the inherited declarations directly or indirectly refine some member of a common supertype, as required by
§4.5.6 Member class refinement, §4.8.7 Attribute refinement, and §4.7.8 Method refinement),

• one of the inherited declarations directly or indirectly refines the other inherited declaration, or

• at least one of the inherited declarations is not shared.

5.1.2. Scope of a declaration

The scope of a declaration is governed by the body or package in which it occurs. A declaration is in scope at a program
element if and only if either:

Statements, blocks, and control structures

Project Ceylon: 1.2 74

• the declaration is a parameter or type parameter of a declaration whose body contains the program element,

• the declaration is a control structure variable or iteration variable belonging to a block of a control structure that con-
tains the program element,

• the program element belongs to or is contained in the body of the declaration itself,

• the program element belongs to or is contained in the body of a class or interface which inherits the declaration,

• the declaration directly occurs in a body containing the program element,

• the declaration is imported by the compilation unit containing the program element and is visible to the program ele-
ment, or

• the declaration is a toplevel declaration in the package containing the program element.

Where:

• A control structure variable or iteration variable belongs to a block of a control structure if the block immediately fol-
lows the declaration of the variable.

• A program element belongs to a declaration if it occurs in the extends, satisfies, of, or given clause of the declara-
tion.

Furthermore:

• A condition variable of a condition belonging to a condition list is in scope in any condition of the same condition list
that occurs lexically later.

• A resource expression variable of a try statement is in scope in any resource expression of the same resource expres-
sion list that occurs lexically later.

• An iteration variable or condition variable of a comprehension is in scope in any clause of the comprehension that oc-
curs lexically later, since comprehension clauses are viewed as nested bodies.

And finally, there are special rules for annotation lists, defined in §7.1.1 Annotation lists:

• An annotation argument list belongs to the annotated declaration.

• An annotation name is considered to occur directly in the compilation unit containing the program element.

Note: if no reference to an un-shared declaration occurs within the scope of the declaration, a compiler warning is pro-
duced.

5.1.3. Visibility

Classes, interfaces, functions, values, aliases, and type parameters have names. Occurrence of a name in code implies a
hard dependency from the code in which the name occurs to the schema of the named declaration. We say that a class, in-
terface, value, function, alias, or type parameter is visible to a certain program element if its name may occur in the code
that belongs to that program element.

The visibility of a declaration depends upon where it occurs, and upon whether it is annotated shared. A toplevel or mem-
ber declaration may be annotated shared:

• If a toplevel declaration is annotated shared, it is visible wherever the package that contains it is visible. Otherwise, a
toplevel declaration is visible only to code in the package containing its compilation unit.

• If a member declaration is annotated shared, it is visible wherever the class or interface that contains it is visible. Oth-
erwise, a declaration that occurs directly inside a class or interface body is visible only inside the class or interface de-
claration.

Note: the Ceylon compiler enforces additional visibility restrictions for members of Java classes, since Java's visibility
modifiers can express restrictions that cannot be reproduced within Ceylon's visibility model. These restrictions are out-

Statements, blocks, and control structures

Project Ceylon: 1.2 75

side the scope of this specification.

A type parameter or a declaration that occurs directly inside a block (the body of a function, getter, setter, or control struc-
ture) may not be annotated shared.

• A type parameter is visible only inside the declaration to which it belongs.

• A declaration that occurs directly inside a block is visible only inside the block.

TODO: Should we allow you to limit the effect of the shared annotation by specifying a containing program element or
package?

We say that a type is visible to a certain program element if it is formed from references to classes, interfaces, type para-
meters, and type aliases whose declarations are visible to the program element. For shared declarations:

• The type of a value must be visible everywhere the value itself is visible.

• The return type of a function must be visible everywhere the function itself is visible.

• The satisfied interfaces of a class or interface must be visible everywhere the class or interface itself is visible.

• The superclass of a class must be visible everywhere the class itself is visible.

• The aliased type of a class alias, interface alias, or type alias must be visible everywhere the alias itself is visible.

5.1.4. Hidden declarations

If two declarations with the same name or imported name, as defined in §4.2.6 Imported name, are both in scope at a cer-
tain program element, then one declaration may hide the other declaration.

• If an inner body is contained (directly or indirectly) in an outer body, a declaration that is in scope in the inner body
but is not in scope in the outer body hides a declaration that is in scope in the outer body. (In particular, a declaration
inherited by a nested class or interface hides a declaration of the containing body.)

• An un-shared declaration occurring directly in the body of a class containing the program element hides a declaration
inherited by the class.

• An actual declaration hides the declaration it refines.

• A declaration occurring in a body containing the program element hides a declaration imported by the compilation unit
containing the body or implicitly imported from the module ceylon.language.

• A toplevel declaration of the package containing the program element hides a declaration implicitly imported from the
module ceylon.language.

• A declaration explicitly imported by the compilation unit containing the program element hides a declaration implicitly
imported from the module ceylon.language.

• A declaration explicitly imported by the compilation unit containing the program element hides a toplevel declaration
of the package containing the compilation unit.

• A declaration explicity imported by name in the compilation unit containing the program element hides a declaration
explicitly imported by wildcard in the compilation unit.

For example, the following code is legal:

class Person(name) {
String name;
shared String lowerCaseName {

String name = this.name.lowercased;
return name;

}
}

As is this code:

Statements, blocks, and control structures

Project Ceylon: 1.2 76

class Point(x, y) {
shared Float x;
shared Float y;

}

class Complex(Float x, Float y=0.0)
extends Point(x, y) {}

When a member of a class is hidden by a nested declaration, the member may be accessed via the self reference this,
defined in §6.3.1 this, or via the outer instance reference outer, defined in §6.3.2 outer.

shared class Item(name) {
variable String name;
shared void changeName(String name) {

this.name = name;
}

}

class Catalog(name) {
shared String name;
class Schema(name) {

shared String name;
Catalog catalog => outer;
String catalogName => outer.name;
class Table(name) {

shared String name;
Schema schema => outer;
String schemaName => outer.name;
String catalogName => catalog.name;

}
}

}

When a toplevel declaration of a package is hidden by another declaration, the toplevel declaration may be accessed via
the containing package reference package, as defined in §5.1.7 Unqualified reference resolution.

Integer n => 0;
Integer f(Integer n) => n+package.n;

5.1.5. References and block structure

A declaration may be in scope at a program element, but not referenceable at the program element. A declaration is refer-
enceable at a program element if the declaration is in scope at the program element and either:

• the program element occurs within the lexical scope of the declaration,

• the declaration is a parameter and the program element occurs within the extends clause of the declaration it paramet-
erizes, or

• the declaration does not directly occur in a block, nor in the initializer section of a class body.

Note that these rules have very different consequences for:

• a declaration that occurs in a block, as specified in §5.3 Blocks and statements, or in an class initializer section, as spe-
cified in §4.5.2 Initializer section, and

• a toplevel declaration, as specified in §4.1.1 Toplevel and nested declarations, or a declaration that occurs in a class de-
claration sectiony, as specified in §4.5.3 Declaration section, or interface body, as specified in §4.4.1 Interface bodies.

Declarations that occurs in a block or class initializer section are interspersed with procedural code that initializes refer-
ences. Therefore, a program element in a block or initializer may not refer to a declaration that occurs later in the block or
class body. This restriction does not apply to declarations that occur in an interface body or class declaration section. Nor
does it apply to toplevel declarations, which are not considered to have a well-defined order.

The following toplevel function declarations, belonging to the same package, are legal:

Float x => y;

Statements, blocks, and control structures

Project Ceylon: 1.2 77

Float y => x;

This code is not legal, since the body of a function is an ordinary block:

Float->Float xy() {
Float x => y; //error: y is not referenceable
Float y => x;
return x->y;

}

This code is not legal, since all three statements occur in the initializer section of the class body:

class Point() {
Float x => y; //error: y is not referenceable
Float y => x;
Float->Float xy = x->y;

}

However, this code is legal, since the statements occur in the declaration section of the class body:

class Point() {
Float x => y;
Float y => x;

}

Likewise, this code is legal, since the statements occur in an interface body:

interface Point {
Float x => y;
Float y => x;

}

5.1.6. Type inference and block structure

A value declared using the keyword value or a function declared using the keyword function may be in scope at a pro-
gram element, but its type may not be inferable, as defined by §3.2.9 Type inference, from the point of view of that pro-
gram element.

The type of a value or function declared using the keyword value or function is inferable to a program element if the de-
claration is in scope at the program element and the program element occurs within the lexical scope of the declaration.

Note: the type of a value or function declared using the keyword value or function is not inferable within the body of the
value or function itself.

For any other declaration, including any declaration which explicitly specifies its type, the type is considered inferable to a
program element if the declaration is in scope at the program element.

The following code is not legal:

interface Point {
value x => y; //error: type of y is not inferable
value y => x;

}

However, this code is legal:

interface Point {
value x => y;
Float y => x;

}

5.1.7. Unqualified reference resolution

An unqualified reference is:

• the type name in an unqualified type declaration or type argument, as defined by §3.2.7 Type expressions, for example

Statements, blocks, and control structures

Project Ceylon: 1.2 78

String and Sequence in Sequence<String>,

• the value, function, constructor, or type name in a base expression, as defined by §6.5.1 Base expressions, for example
counter in counter.count, entries and people in entries(people*.name), or Entry, name, and item in
Entry(name,item), or

• the type name in an unqualified type in a static expression, as defined by §6.5.6 Static expressions, or constructor ex-
pression, as defined by §6.5.3 Constructor expressions, for example Sequence in Sequence.iterator.

If a program element contains an unqualified reference:

• there must be at least one declaration with the given name or imported into the toplevel namespace of the compilation
unit, as defined in §4.2 Imports, and aliased to the given imported name, as defined in §4.2.6 Imported name, in scope
at the program element, and

• if multiple declarations with the given name or imported name are in scope at the program element where the given
name occurs, then it is guaranteed by the type system and §5.1.1 Declaration name uniqueness that there is exactly one
such declaration which is not hidden by any other declaration.

As an exception to this, if the expression or type expression begins with the qualifier keyword package, then there must be
a toplevel declaration with the given name defined in the package to which the compilation unit belongs.

Then the reference is to this unique unhidden declaration, and:

• the declaration must be referenceable at the program element,

• the type of the declaration must be inferable to the program element, and

• if the declaration is forward-declared, it must be definitely initialized at the program element.

As a special exception to the above, if there is no declaration with the given name or imported name in scope at the pro-
gram element and the program element occurs inside a dynamic block, then the unqualified reference does not refer to any
statically typed declaration.

If an unqualified reference refers to a member declaration of a type, then there is a unique inheriting or declaring class or
interface for the unqualified reference, that is, the unique class or interface in whose body the unqualified reference occurs,
and which declares or inherits the member declaration, and for which the member is not hidden at the program element
where the unqualified reference occurs.

5.1.8. Qualified reference resolution

A qualified reference is:

• the type name in a qualified type declaration or type argument, as defined by §3.2.7 Type expressions, for example
Buffer in BufferedReader.Buffer,

• the value, function, or type name in a member expression, as defined by §6.5.2 Member expressions, for example
count in counter.count, split in text.split(), or Buffer in br.Buffer(),

• the constructor name in a constructor expression, as defined by §6.5.3 Constructor expressions, or

• the type name in a qualified type in a static expression, as defined by §6.5.6 Static expressions, for example Buffer in
BufferedReader.Buffer.size, or the member name in a static expression, for example iterator in Se-

quence.iterator, or size in BufferedReader.Buffer.size.

Every qualified reference has a qualifying type:

• For a type declaration, the qualifying type is the full qualified type the qualifies the type name.

• For a value reference or callable reference, the qualifying type is the type of the receiver expression.

• For a constructor reference, the qualifying type is the type of the qualifying base or member expression.

Statements, blocks, and control structures

Project Ceylon: 1.2 79

• For a static reference, the qualifying type is the full qualified type the qualifies the type or member name.

A qualified reference may not have Nothing as the qualifying type.

If a program element contains a qualified reference:

• the qualifying type must have or inherit at least one member or nested type with the given name or aliased to the given
imported name, as defined in §4.2.6 Imported name, which is visible at the program element, and

• if there are multiple visible members with the given name or imported name, then it is guaranteed by the type system
and §5.1.1 Declaration name uniqueness that there is exactly one such member which is not refined by another mem-
ber, except

• if the qualifying type inherits a class or interface that contains the program element, and an un-shared declaration con-
tained directly in the body of this class or interface has the same name as a shared member of the qualifying type, in
which case the un-shared declaration hides the shared member, or

• if the qualifying type is an intersection type, in which case there may be multiple members which are not refined by
another member, but where there is exactly one such member that is refined by each of these members, but is not re-
fined by another member that is refined by all of these members, except

• in the case of certain pathological intersection types, where two of the intersected types declare distinct members with
the same name, that do not refine any member of a common supertype (in which case what we actually have are dis-
joint types that are nevertheless not considered provably disjoint within the rules of the typesystem), and in this case
the qualified reference is considered illegal.

Then the reference is to the unique member or nested class. If the program element is contained in the body of a class or
interface, and the member declaration directly occurs in the body of the class or interface, and the qualified reference is a
value reference or callable reference, and the receiver expression is a self reference to the instance being initialized, then:

• the member declaration must be referenceable at the program element,

• the type of the member must be inferable to the program element, and

• if the member declaration is forward-declared, it must be definitely initialized at the program element.

As a special exception to the above, if the program element occurs inside a dynamic block, and the the receiver expression
has no type, then the qualified reference does not refer to any statically typed declaration.

5.2. Patterns and variables

Destructuring statements, assertions, and some control structures allow inline declaration of a variables, which often occur
as part of a more complex pattern.

Note: the use of the term variable here does not imply any connection to the variable annotation for values. A variable in
a destructuring statement, assertion, or control structure may not be assigned using a specification or assignment state-
ment.

5.2.1. Variables

A variable is a streamlined form of reference declaration, as defined by §4.8.1 References.

TypedVariable: Type MemberName

In most cases, the explicit type be omitted.

Variable: (Type | "value")? MemberName

If the explicit type is missing from the declaration, the type of the variable is inferred, according to rules that depend upon
the control structure to which the variable belongs.

A variable declared by a destructuring statement is a reference scoped to the body in which the destructuring statement oc-

Statements, blocks, and control structures

Project Ceylon: 1.2 80

curs.

A variable declared by an assertion is a reference scoped to the body in which the assert statement occurs.

A variable declared by a control structure is a reference scoped to the block that immediately follows the variable declara-
tion:

• For a variable in an if condition, the scope of the variable is the if block.

• For a variable in a while condition, the scope of the variable is the while block.

• For a variable in a for iterator, the scope of the variable is the for block.

• For a variable in a try clause, the scope of the variable is the try block.

• For a variable in a catch clause, the scope of the variable is the catch block.

• For a variable in an assert statement, the scope of the variable is the body containing the assert statement.

5.2.2. Patterns

An expression whose type is an instantiation of Sequential, Sequence, Tuple, or Entry may be assigned to a pattern. The
type of an expression assigned to a pattern is called the patterned type.

TODO: actually, the following section does not do justice to the compiler, which can actually handle subtypes of these
types, including type parameters upper bounded by these types.

Patterns are formed from:

• pattern variables,

• tuple patterns, and

• entry patterns.

Pattern: Variable | TuplePattern | EntryPattern

Note: in a future release of the language, we might introduce a more general pattern matching system, allowing pattern
matching against arbitrary classes.

5.2.3. Pattern variables

A pattern variable is just a variable, as defined above, that occurs as in a pattern.

If the variable has an explicit type, then the patterned type must be assignable to this type. Otherwise, the type of the vari-
able is inferred to be the patterned type.

A variadic pattern variable is indicated with an asterisk.

VariadicVariable: UnionType? "*" MemberName

Variadic pattern variables only occur in tuple patterns.

5.2.4. Tuple patterns

A tuple pattern comprises a list of element patterns, ending in, optionally, a variadic pattern variable called a variadic ele-
ment pattern. Tuple patterns are enclosed in brackets.

TuplePattern: "[" (Pattern ",")* (Pattern | VariadicVariable) "]"

The patterned type must be an instantiation of the type Tuple, Sequential, or Sequence in ceylon.language. Then:

Statements, blocks, and control structures

Project Ceylon: 1.2 81

• If the tuple pattern has only one element pattern, and it is variadic, then the patterned type of this variadic element pat-
tern is just the patterned type of the surrounding tuple pattern.

• Or, if the tuple pattern has only one element pattern, and it is not variadic, then the patterned type must be a single-
element instantiation [T] of Tuple, and the patterned type of the element pattern is T.

• Otherwise, if the patterned type is an instantiation Tuple<T,F,R> of Tuple, then the patterned type of the first element
pattern is F, and the patterned types of the remaining element patterns, if any, are determined by forming a new tuple
pattern with patterned type R by removing the first element pattern from the list of element patterns.

• Or, if the patterned type is an instantiation [T+] of Sequence, then there must be exactly two element patterns, and the
second element pattern must be variadic. Then the patterned type of the first element pattern is T, and the patterned
type of the second element pattern is [T*].

value [x, y, z] = [1.0, 2.0, 0.0];

value [first, *rest] = sequence;

Note: Ceylon does not support parallel assignment statements of form value x, y, z = 1.0, 2.0, 0.0; since the infix =

symbol has a higher precedence than the comma , throughout the language.

5.2.5. Entry patterns

An entry pattern comprises a key pattern, followed by an item pattern.

EntryPattern: KeyOrItemPattern "->" KeyOrItemPattern

KeyOrItemPattern: Variable | TuplePattern

The patterned type must be an instantiation K->V of the type Entry in ceylon.language. Then:

• the patterned type of the key pattern is K, and

• the patterned type of the item pattern is V.

value name->[lat,long] = observatory;

5.3. Blocks and statements

A block is list of semicolon-delimited statements, control structures, and declarations, surrounded by braces.

Block: "{" (Declaration | Statement)* "}"

A statement is an assignment or specification, an invocation of a method, an instantiation of a class, a destructuring state-
ment, a control structure, a control directive, or an assertion.

Statement: ExpressionStatement | Specification | Destructure | Directive | ControlStructure | Dynamic

A statement or declaration contained in a block may not evaluate a value, invoke a function, instantiate a class, or extend a
class whose declaration occurs later in the block.

5.3.1. Expression statements

Only certain expressions are valid statements:

• assignment,

• prefix or postfix increment or decrement,

• invocation of a method,

Statements, blocks, and control structures

Project Ceylon: 1.2 82

• instantiation of a class.

ExpressionStatement: (Assignment | IncrementOrDecrement | Invocation) ";"

For example:

x += 1;

x++;

print("Hello");

Main(process.arguments);

5.3.2. Control directives

A control directive statement ends execution of the current block and forces the flow of execution to resume in some outer
scope. They may only occur as the lexically last statement of a block.

There are four control directives:

• the return directive—to return a value from a getter or non-void function or terminate execution of a setter, class ini-
tializer, or void method,

• the break directive—to terminate a loop,

• the continue directive—to jump to the next iteration of a loop, and

• the throw directive—to raise an exception.

Directive: (Return | Throw | Break | Continue) ";"

For example:

throw Exception();

return x+y;

break;

continue;

The return directive must sequentially occur in the body of a function, getter, setter, or class initializer. In the case of a
setter, class initializer, or void function, no expression may be specified. In the case of a getter or non-void function, an
expression must be specified. The expression type must be assignable to the return type of the function or the type of the
value. When the directive is executed, the expression is evaluated to determine the return value of the function or getter.

Return: "return" Expression?

If the specified expression has no type, or if the function or getter has no type, and the directive occurs within a dynamic

block, then the directive is not type-checked at compile time.

Note: a return statement returns only from the innermost function, getter, setter, or class initializer, even in the case of a
nested or anonymous function. There are no "non-local returns" in the language.

The break directive must sequentially occur in the body of a loop.

Break: "break"

The continue directive must sequentially occur in the body of a loop.

Continue: "continue"

Statements, blocks, and control structures

Project Ceylon: 1.2 83

A throw directive may appear anywhere and may specify an expression, whose type must be a subtype of type Throwable

defined in ceylon.language. When the directive is executed, the expression is evaluated and the resulting exception is
thrown. If no expression is specified, the directive is equivalent to throw Exception().

Throw: "throw" Expression?

If the specified expression has no type, and the directive occurs within a dynamic block, then the directive is not type-
checked at compile time.

5.3.3. Specification statements

A specification statement may specify or initialize the persistent value of a forward-declared reference, or specify the im-
plementation of a forward-declared getter or function.

Specification: ValueSpecification | LazySpecification

The persistent value of a forward-declared reference or the implementation of a forward-declared function may be spe-
cified by a value specification statement. The value specification statement consists of an unqualified value reference, or a
qualified value reference where the receiver expression is this, and an ordinary = specifier. The value reference must refer
to a declaration which sequentially occurs earlier in the body in which the specification statement occurs.

ValueSpecification: ("this" ".")? MemberName Specifier ";"

The type of the specified expression must be assignable to the type of the reference, or to the callable type of the function.

If the specified expression has no type, or if the reference or function has no type, and the specification occurs within a dy-

namic block, then the specification is not type-checked at compile time.

String greeting;
if (exists name) {

greeting = "hello ``name``";
}
else {

greeting = "hello world";
}

String process(String input);
if (normalize) {

process = String.normalized;
}
else {

process = (String s) => s;
}

Note: there is an apparent ambiguity here. Is the statement x=1; a value specification statement, or an assignment expres-
sion statement? The language resolves this ambiguity by favoring the interpretation as a specification statement whenever
that interpretation is viable. This is a transparent solution, since it accepts strictly more code than the alternative inter-
pretation, and for ambiguous cases the actual semantics are identical between the two interpretations.

The implementation of forward-declared getter or function may be specified using a lazy specification statement. The spe-
cification statement consists of either:

• an unqualified value reference, or a qualified value reference where the receiver expression is `this`, and a lazy => spe-
cifier, or

• a unqualified callable reference, or a qualified value reference where the receiver expression is `this`, one or more
parameter lists, and a lazy specifier.

The value reference or callable reference must refer to a declaration which sequentially occurs earlier in the body in which
the specification statement occurs.

A callable reference followed by a parameter list is itself considered a callable reference, called a parameterized reference.
If the parameter list has type P then the callable reference must have the exact type R(*P) for some type R. Then the type of
the parameterized reference is R.

ParameterizedReference: ("this" ".")? MemberName Parameters+

Statements, blocks, and control structures

Project Ceylon: 1.2 84

Thus, the specification statement consists of a parameterized reference followed by a lazy specifier.

LazySpecification: (MemberName | ParameterizedReference) LazySpecifier ";"

The type of the specified expression must be assignable to the type of the parameterized reference, or to the type of the
value reference.

String greeting;
if (exists name) {

greeting => "hello ``name``";
}
else {

greeting => "hello world";
}

String process(String input);
if (normalize) {

process(String input) => input.normalized;
}
else {

process(String s) => s;
}

5.3.4. Destructuring statements

A destructuring statement assigns an expression to a pattern, as defined above in §5.2.2 Patterns.

Destructure: "value" (TuplePattern | EntryPattern) Specifier ";"

The type of the specified expression is the patterned type of the tuple or entry pattern.

5.3.5. Dynamic blocks

A dynamic block allows interoperation with dynamically typed native code.

Dynamic: "dynamic" Block

Inside a dynamic block an expression may have no type, as specified in Chapter 6, Expressions.

An expression with no type:

• may be specified or assigned to a typed value, as defined in §5.3.3 Specification statements,

• may be passed as the argument of a typed parameter in an invocation expression, as defined in §6.6.1 Direct invoca-
tions,

• may be the invoked expression of an invocation, as defined in §6.6 Invocation expressions,

• may be returned by a typed function or getter, or thrown as an exception, as defined in §5.3.2 Control directives,

• may be the operand of an operator expression, as defined in §6.5 Compound expressions, or

• may be the subject of a control structure condition, as defined in §5.4 Conditions, a switch, as defined in §5.5.2
switch/case/else, or a for iterator, as defined in §5.5.3 for/else.

Furthermore:

• a qualified or unqualified reference may not refer to a statically typed declaration, as defined by §5.1.7 Unqualified ref-
erence resolution and §5.1.8 Qualified reference resolution.

These situations result in dynamic type checking, as defined in §8.3.6 Dynamic type checking, since the usual static type
checks are impossible.

Note: within a dynamic block, Ceylon behaves like a language with optional static typing, performing static type checks
where possible, and dynamic type checking where necessary.

Statements, blocks, and control structures

Project Ceylon: 1.2 85

5.3.6. Definite return

A sequence of statements may definitely return.

• A sequence of statements definitely returns if it ends in a return or throw directive, or in a control structure that defin-
itely returns, or contains an assertion with a condition list that is never satisfied.

• A body definitely returns if it contains a list of statements that definitely returns.

• An if conditional definitely returns if it has an else block and both the if and else blocks definitely return, or if its
condition list is always satisfied and the if block definitely returns, or if its condition list is never satisfied and it has
an else block that definitely returns.

• A switch conditional definitely returns if all case blocks definitely return and the else block, if any, definitely returns.

• A for loop definitely returns if it has an else block that definitely returns, and there is no break directive in the for

block, or if the iterated expression type is a nonempty type, and the for block definitely returns.

• A while loop definitely returns if its condition list is always satisfied and the while block definitely returns.

• A try/catch exception manager definitely returns if the try block definitely returns and all catch blocks definitely re-
turn or if the finally block definitely returns.

The body of a non-void method or getter must definitely return.

A body may not contain an additional statement, control structure, or declaration following a sequence of statements that
definitely returns. Such a statement, control structure, or declaration is considered unreachable.

5.3.7. Definite initialization

A sequence of statements may definitely initialize a forward-declared declaration.

• A sequence of statements definitely initializes a declaration if one of the statements is a specification statement or as-
sigment expression for the declaration or a control structure that definitely initializes the declaration, or if the sequence
of statements ends in a return or throw directive, or contains an assertion with a condition list that is never satisfied.

• An if conditional definitely initializes a declaration if it has an else block and both the if and else blocks definitely
initialize the declaration, of if its condition list is always satisfied and the if block definitely initializes the declaration,
of if its condition list is never satisfied and it has an else block that definitely initializes the declaration.

• A switch conditional definitely initializes a declaration if all case blocks definitely initialize the declaration and the
else block, if any, definitely initializes the declaration.

• A for loop definitely initializes a declaration if it has an else block that definitely initializes the declaration, and there
is no break directive in the for block, or if the iterated expression type is a nonempty type, and the for block defin-
itely initializes the declaration.

• A while loop definitely initializes a declaration if its condition list is always satisfied and the while block definitely
initializes the declaration.

• A try/catch exception manager definitely initializes a declaration if the try block definitely initializes the declaration
and all catch blocks definitely initialize the declaration or if the finally block definitely initializes the declaration.

• A constructor of a class definitely initializes a declaration if the body of the constructor definitely initializes the declar-
ation, or if the constructor delegates to a constructor which definitely initializes the declaration.

• The constructors of a class definitely initialize a declaration if every non-partial constructor of the class definitely ini-
tializes the declaration.

TODO: an assignment expression occurring within a containing expression may or may not definitely initialize a value.
Specify this!

If a function or value declaration is referenceable at a certain statement or declaration, it may additionally be considered
definitely initialized at that statement or declaration.

Statements, blocks, and control structures

Project Ceylon: 1.2 86

If a function declaration is definitely initialized at a certain statement or declaration if it is referenceable at that statement
or declaration and:

• it is a parameter,

• it is not forward-declared, or

• it is forward-declared and is definitely initialized by the sequence of statements from its declaration to the given state-
ment or declaration.

As an exception, a member of a class is not considered definitely initialized within the extends clause of the class or of
any of its constructors.

If a value declaration is definitely initialized at a certain statement or declaration if it is referenceable at that statement or
declaration and:

• it is a parameter,

• it is not forward-declared and the given statement or declaration is not the value declaration itself, and does not occur
within the body of the value declaration, or

• it is forward-declared and is definitely initialized by the sequence of statements from its declaration to the given state-
ment or declaration.

A function or value declaration must be definitely initialized wherever any value reference or callable reference to it oc-
curs as an expression within the body in which it is declared.

A shared forward-declared declaration belonging to a class and not annotated late must be definitely initialized:

• at every return statement of the initializer of the containing class, and

• at the end of the very last expression statement, directive statement, constructor, or specification statement of the ini-
tializer of the containing class.

A specification statement for a method or non-variable reference, getter, or function may not (indirectly) occur in a for

or while block unless the declaration itself occurs within the same for or while block.

TODO: Furthermore, the typechecker does some tricky analysis to determine that code like the following can be accepted:

Boolean minors;
for (p in people) {

if (p.age<18) {
minors = true;
break;

}
}
else {

minors = false;
}

5.3.8. Definite uninitialization

A sequence of statements may possibly initialize a forward-declared declaration.

• A sequence of statements possibly initializes a declaration if one of the statements is a specification statement for the
declaration or a control structure that possibly initializes the declaration.

• An if conditional possibly initializes a declaration if either the if block possibly initializes the declaration and the
condition list is not never satisfied, or if the else block, if any, possibly initializes the declaration and the condition list
is not always satisfied.

• A switch conditional possibly initializes a declaration if one of the case blocks possibly initializes the declaration or
the else block, if any, possibly initializes the declaration.

• A for loop possibly initializes a declaration if the for block possibly initializes the declaration or if it has an else

Statements, blocks, and control structures

Project Ceylon: 1.2 87

block that possibly initializes the declaration.

• A while loop possibly initializes a declaration if the while block possibly initializes the declaration and the condition
list is not never satisfied.

• A try/catch exception manager possibly initializes a declaration if the try block possibly initializes the declaration, if
one of the catch blocks possibly initializes the declaration, or if the finally block possibly initializes the declaration.

• A constructor of a class possibly initializes a declaration if the body of the constructor possibly initializes the declara-
tion, or if the constructor delegates to a constructor which possibly initializes the declaration.

• The constructors of a class possibly initialize a declaration if at least one constructor of the class possibly initializes the
declaration.

A forward-declared declaration is considered definitely uninitialized at a certain statement or declaration if:

• it is not possibly initialized by the sequence of statements from its declaration to the given statement or declaration,

• the statement does not (indirectly) occur in the for block or else block of a for loop with a for block that possibly
initializes it,

• the statement does not (indirectly) occur in the while block of a while loop with a while block that possibly initializes
it,

• the statement does not (indirectly) occur in a catch block of a try/catch exception manager with a try block that pos-
sibly initializes it, and

• the statement does not (indirectly) occur in the finally block of a try/catch exception manager with a try block or
catch block that possibly initializes it.

A function or non-variable value declaration must be definitely uninitialized wherever any value reference or callable
reference to it occurs as a specification statement within the body in which it is declared.

5.4. Conditions

Assertions and certain control structures have a condition list. A condition list has one or more conditions.

ConditionList: "(" Condition ("," Condition)* ")"

Any condition in the list may refer to a variable defined in a condition that occurs earlier in the list.

A condition list is considered to be always satisfied if every condition in the list is always satisfied. A condition list is con-
sidered to be never satisfied if some condition in the list is never satisfied.

There are four kinds of condition:

• a boolean condition is satisfied when a boolean expression evaluates to true,

• an assignabilty condition is satisfied when an expression evaluates to an instance of a specified type,

• an existence condition is satisfied when an expression evaluates to a non-null value, and

• a nonemptiness condition is satisfied when an expression evaluates to a non-null, non-empty value.

Condition: BooleanCondition | IsCondition | ExistsOrNonemptyCondition

TODO: are we going to support satisfies conditions on type parameters, for example, if (Element satisfies Ob-

ject), to allow refinement of its upper bounds?

5.4.1. Boolean conditions

A boolean condition is just an expression.

Statements, blocks, and control structures

Project Ceylon: 1.2 88

BooleanCondition: Expression

The expression must be of type Boolean.

A boolean condition is considered to be always satisfied if it is a value reference to true. A boolean condition is con-
sidered to be never satisfied if it is a value reference to false.

TODO: Should we do some more sophisticated static analysis to determine if a condition is always/never satisfied?

5.4.2. Assignability conditions

An assignability condition may contain either:

• an unqualified value reference to a non-variable, non-default reference, or

• an inline variable declaration together with an expression.

IsCondition: "!"? "is" (TypedVariable Specifier | Type MemberName)

A negated assignability condition is one which starts with !.

Note: the prefix form is Type val reads a little unnaturally in English. But for a condition with a specifier, the form is

Type val = expression is much less ambiguous than val = expression is Type, which looks like an assignment of a
boolean value.

TODO: are we going to allow is Type this and is Type outer to narrow the type of a self reference?

The type of the value reference or expression in an assignability condition must be:

• in the case of a condition which is not negated, a type which is not a subtype of the specified type, but whose intersec-
tion with the specified type is not exactly Nothing, except

• in the case of a negated condition, a type whose intersection with the specified type is not exactly Nothing, and which
is not a supertype of the specified type, or

Note: an assignability condition may narrow to an intersection or union type.

if (is Printable&Identifiable obj) { ... }

if (is Integer|Float num) { ... }

For an assignability condition with a conditional expression of type T and specified type X:

• if the condition contains a value reference, the value will be treated by the compiler as having type T&X inside the block
or expression that immediately follows the condition, and, if this is the only condition in the condition list, as having
type T~X inside the following else block or expression if any, unless

• it is a !is negated assignability condition, in which case the value will be treated by the compiler as having type T~X

inside the block or expression that immediately follows the condition, and, if this is the only condition in the condition
list, as having type T&X inside the following else block or expression if any.

Where, for any given types T and X, the type T~X is determined as follows:

• if X covers T, as defined by §3.4.1 Coverage, then T~X is Nothing,

• if T is an intersection type, then T~X is the intersection of all U~X for every type U in the intersection,

• if T is a union type, then T~X is the union of all U~X for every type U in the union,

• if T is a type parameter, then T~X is T&<U~X> when U is the intersection of all upper bounds on T, or Anything if T has
no declared upper bounds,

Statements, blocks, and control structures

Project Ceylon: 1.2 89

• if T is an enumerated type or an instantiation of a generic enumerated type, then T~X is the union of all C~X for every
case C of T, or,

• otherwise, T~X is T.

If you prefer, you can think of the following:

Transaction tx = ...
if (is Usable tx) { ... }

As an abbreviation of:

if (is Transaction&Usable tx = tx) { ... }

Where the tx declared by the condition hides the outer declaration of tx inside the block that follows.

As a special exception to the above, if a condition occurs in a dynamic block, and the conditional expression has no type,
and the condition contains a value reference, then:

• if the condition is not negated, the value will be treated by the compiler as having type X where X is the specified type,
inside the block or expression that immediately follows the condition, or, otherwise

• if the condition is negated, the value will be treated by the compiler as having no type.

5.4.3. Existence and nonemptiness conditions

An existence or nonemptiness condition may contain either:

• an unqualified value reference to a non-variable, non-default reference, or

• a pattern together with an expression.

ExistsOrNonemptyCondition: "!"? ("exists" | "nonempty") (Pattern Specifier | MemberName)

A negated condition is one which starts with !.

The type of the value reference or expression must be:

• in the case of an existence condition or negated existence condition, a type whose intersection with Null is not exactly
Nothing and whose intersection with Object is not exactly Nothing, or

• in the case of a nonemptiness condition or a negated nonemptiness condition, a subtype of Anything[]? whose inter-
section with [] is not exactly Nothing, and whose intersection with [Nothing+] is not exactly Nothing.

Every existence or nonemptiness condition is equivalent to—and may be considered an abbreviation of—an assignability
condition:

• exists x is equivalent to is Object x, and

• !exists x is equivalent to is Null x,

• nonempty x is equivalent to is [E+] x where x is an expression whose type has the principal instantiation E[]?, and

• !nonempty x is equivalent to is [] x.

For an existence condition which is not negated:

• if the condition has a pattern, the patterned type is T&Object, where the specifier expression is of type T, and, if the pat-
tern is a pattern variable, the declared type of the variable, if any, must be a subtype of Object, or

• if the condition contains a value reference, the value will be treated by the compiler as having type T&Object inside the
block or expression that immediately follows the condition, where the conditional expression is of type T, and, if this is

Statements, blocks, and control structures

Project Ceylon: 1.2 90

the only condition in the condition list, as having the type T&Null inside the following else block or expression if any.

For a negated existence condition:

• if the condition has a pattern, it must be a pattern variable, and the patterned type is T&Null, where the specifier expres-
sion is of type T, and the declared type of the variable, if any, must be Null, or

• if the condition contains a value reference, the value will be treated by the compiler as having type T&Null inside the
block or expression that immediately follows the condition, where the conditional expression is of type T, and, if this is
the only condition in the condition list, as having the type T&Object inside the following else block or expression if
any.

For a nonemptiness condition which is not negated:

• if the condition has a pattern, the patterned type is T&[E+], where the specifier expression is of type T and T has the
principal instantiation E[]?, and, if the pattern is a pattern variable, the declared type of the variable, if any, must be a
subtype of [Anything+], or

• if the condition contains a value reference, the value will be treated by the compiler as having type T&[E+] inside the
block or expression that immediately follows the condition, where the conditional expression is of type T and T has the
principal instantiation E[]?, and, if this is the only condition in the condition list, as having the type T&[] inside the
following else block or expression if any.

For a negated nonemptiness condition:

• if the condition has a pattern, it must be a pattern variable, and the patterned type is T&[], where the specifier expres-
sion is of type T and T has the principal instantiation E[]?, and the declared type of the variable, if any, must be [], or

• if the condition contains a value reference, the value will be treated by the compiler as having type T&[] inside the
block or expression that immediately follows the condition, where the conditional expression is of type T and T has the
principal instantiation E[]?, and, if this is the only condition in the condition list, as having the type T&[E+] inside the
following else block or expression if any.

If you prefer, you can think of the following:

if (exists name) { ... }

As an abbreviation of:

if (exists String name = name) { ... }

Where the name declared by the condition hides the outer declaration of name inside the block that follows.

As a special exception to the above, if a condition occurs in a dynamic block, and the conditional expression has no type,
and the condition contains a value reference, then the value will be treated by the compiler as having no type.

5.4.4. Case conditions

The branches of a switch conditional each belong to a case condition. There are two kinds of case condition:

• a value case—a list of string literals, character literals, integer literals, negated integer literals, value references to
value constructors, and/or value references to anonymous classes, or

• a type case—an assignability condition of form is V for some type V.

For a value case, each value reference must be to:

• a toplevel anonymous class that is a subtype of Identifiable|Null, or

• a value constructor of a toplevel class that is a subtype of Identifiable.

CaseCondition: "(" (ValueCase | TypeCase) ")"

Statements, blocks, and control structures

Project Ceylon: 1.2 91

ValueCase: CaseValue ("|" CaseValue)*

TypeCase: "is" Type

CaseValue: LiteralCase | BaseExpression | ConstructorExpression

LiteralCase: "-"? IntegerLiteral | CharacterLiteral | StringLiteral | VerbatimStringLiteral

Every case condition has a type:

• for a value case, the type is the union of the types of the values, and

• for a type case, the type is the specified type.

Note: to each value constructor, the compiler assigns an internal type which is a subtype of the type of the class to which
the constructor belongs. The union of all internal value constructor types for value constructors listed in the of clause of
the class declaration covers the class type.

For a case of type U of a switch with switched type V, as defined below in §5.5.2 switch/case/else:

• the intersection type V&U must not be exactly Nothing, and

• if the case is a type case, the switch variable, or, if there is no inline variable declared by the switch, the value re-
ferred by the switch expression, will be treated by the compiler as having the type V&U inside the case block.

As a special exception to the above, if a switch occurs in a dynamic block, and there is no switched type, the switch vari-
able, or the value referred by the switch expression will be treated by the compiler as having the type V inside the case

block.

Note: a type case may narrow to an intersection or union type.

case (is Persistent & Serializable) { ... }

case (is Integer | Float) { ... }

5.5. Control structures and assertions

Control of execution flow may be achieved using control directives and control structures. Control structures include con-
ditionals, loops, and exception management.

Ceylon provides the following control structures:

• the if/else conditional—for controlling execution based on a boolean condition, type condition, or check for a non-
null or non-empty value,

• the switch/case/else conditional—for controlling execution using an enumerated list of values or types,

• the while loop—for loops which terminate based on a boolean condition, type condition, or check for a non-null or
non-empty value,

• the for/else loop—for looping over elements of an iterable object, and

• the try/catch/finally exception manager—for managing exceptions and controlling the lifecycle of objects which
require explicit destruction.

ControlStructure: IfElse | SwitchCaseElse | While | ForFail | TryCatchFinally | Assertion

Control structures are not considered to be expressions, and therefore do not evaluate to a value. However, comprehen-
sions, specified in §6.6.6 Comprehensions, and conditional expressions, specified in §6.7 Conditional expressions, let ex-
pressions, and anonymous class expressions are part of the expression syntax and share much of the syntax and semantics
of the control structures they resemble.

Statements, blocks, and control structures

Project Ceylon: 1.2 92

Assertions are runtime checks upon program invariants, or function preconditions and postconditions. An assertion failure
represents a bug in the program, and is not considered recoverable. Therefore, assertions should not be used to control "nor-
mal" execution flow.

Note: of course, in certain circumstances, it is appropriate to handle the exception that results from an assertion failure,
for example, to display a message to the user, or in a testing framework to aggregate and report the failures that occurred
in test assertions. A test failure may be considered "normal" occurrence from the point of view of a testing framework, but
it's not "normal" in the sense intended above.

5.5.1. if/else

The if/else conditional has the following form:

IfElse: If Else?

If: "if" ConditionList Block

Else: "else" (Block | IfElse)

Every if/else conditional construct has an if clause. The construct may optionally include:

• a chain of an arbitrary number of child else if clauses, and/or

• an else clause.

if (payment.amount <= account.balance) {
account.balance -= payment.amount;
payment.paid = true;

}
else {

throw NotEnoughMoneyException();
}

shared void welcome(User? user) {
if (exists user) {

print("Welcome back, ``user.name``!");
}
else {

print("Welcome to Ceylon!");
}

}

if (is CardPayment p = order.payment,
!p.paid) {

p.card.charge(total);
}

5.5.2. switch/case/else

The switch/case/else conditional has the following form:

SwitchCaseElse: Switch Case+ Else?

Every switch conditional has a switch clause.

Switch: "switch" "(" SwitchVariableOrExpression ")"

The switch clause has a switched expression, either:

• an expression, or

• an inline variable declaration together with a specified expression.

SwitchVariableOrExpression: Expression | Variable Specifier

Statements, blocks, and control structures

Project Ceylon: 1.2 93

The switched type is the type of the expression or inline variable.

Note: there is an ambiguity here between assignment expressions and inline variable declarations. This ambiguity is re-
solved in favor of interpreting the switched expression as a variable declaration. Therefore, a switched expression in a
switch clause may not be an assignment expression.

If a switch has a type case condition, and does not declare an inline variable, then the switched expression must be an un-
qualified value reference to a non-variable, non-default reference.

In addition, every switch conditional must include:

• a chain of one or more child case clauses, and,

• optionally, a chain of an arbitrary number of child else if clauses, and/or

• optionally, an else clause.

Case: "case" CaseCondition Block

Two cases are said to be disjoint if:

• the intersection of the types of their case conditions is exactly Nothing, as defined by §3.4.4 Disjoint types, or

• if they are both value cases with no literal value or anonymous class value reference in common.

In every switch statement, all cases must be mutually disjoint.

A switch is exhaustive if there are no literal values in its cases, and the union type formed by the types of the case condi-
tions of the switch covers the switched type, as defined by §3.4.1 Coverage. If no else block is specified, the switch must
be exhaustive.

Note: On the other hand, even if the switch is exhaustive, an else block may be specified, in order to allow a switch that
accommodates additional cases without resulting in a compilation error.

As a special exception to the above, if a switch occurs in a dynamic block, and the switched expression has no type, the
cases are not statically type-checked for exhaustion.

If an else block is specified, then the switch variable or, if there is no inline variable declared by the switch, the value re-
ferred by the switch expression, will be treated by the compiler as having the type V~U inside the else block, where V is
the switched type, and U is the union type formed by the types of the case conditions of the switch.

Boolean? maybe = ... ;
switch (maybe)
case (null | false) {

return false;
}
case (true) {

return true;
}

Integer|Float number = ... ;
switch (number)
case (is Integer) {

return sqrt(number.float);
}
case (is Float) {

return sqrt(number);
}

5.5.3. for/else

The for/else loop has the following form:

ForFail: For Fail?

For: "for" ForIterator Block

Statements, blocks, and control structures

Project Ceylon: 1.2 94

Fail: "else" Block

Every for/else conditional construct has an for clause. The construct may optionally include an else clause, as specified
in §8.3.4 Execution of loops.

The for iterator has an iterator pattern and an iterated expression that contains the range of values to be iterated.

ForIterator: "(" Pattern "in" Expression ")"

The type of the iterated expression must have some principal supertype instantiation {T*} or {T+} of Iterable in
ceylon.language. Then the patterned type of the iterator pattern is T.

As a special exception to the above, if a for occurs in a dynamic block, and the iterated expression has no type, the iterator
is not statically type-checked. If the iteration variable does not declare an explicit type, the iteration variable has no type.

for (p in people) {
print(p.name);

}

variable Float sum = 0.0;
for (i in -10..10) {

sum += x[i] else 0.0;
}

for (word -> freq in wordFrequencyMap) {
print("The frequency of ``word`` is ``freq``.");

}

for (p in group) {
if (p.age >= 18) {

log.info("Found an adult: ``p.name``.");
break;

}
}
else {

log.info("No adult in group.");
}

5.5.4. while

The while loop has the form:

While: LoopCondition Block

The loop condition list determines when the loop terminates.

LoopCondition: "while" ConditionList

TODO: does while need an else block? Python has it, but what is the real usecase?

variable Integer n=0;
variable [Integer*] seq = [];
while (n<=max) {

seq=seq.withTrailing(n);
n+=step(n);

}

5.5.5. try/catch/finally

The try/catch/finally exception manager has the form:

TryCatchFinally: Try Catch* Finally?

Try: "try" ResourceList? Block

ResourceList: "(" Resource ("," Resource)* ")"

Statements, blocks, and control structures

Project Ceylon: 1.2 95

Catch: "catch" "(" Variable ")" Block

Finally: "finally" Block

Every try conditional construct has a try clause. The construct may optionally include:

• a chain of an arbitrary number of child catch clauses, and/or

• a finally clause, as specified in §8.3.5 Exception handling.

Each catch block defines a variable. The type of the variable must be assignable to Throwable in ceylon.language. If no
type is explicitly specified, the type is inferred to be Exception.

Note: a catch block type may be a union or intersection type:

catch (NotFoundException|DeletedException e) { ... }

If there are multiple catch blocks in a certain control structure, then:

• The type of a catch variable may not be a subtype of any catch variable of an earlier catch block belonging to the
same control structure.

• If the type of a catch variable is a union type E1|E2|...|En then no member Ei of the union may be a subtype of any
catch variable of an earlier catch block belonging to the same control structure.

The try block may have a list of resource expressions, each of which may produce either:

• a destroyable resource, or

• an obtainable resource.

Resource: Expression | Variable Specifier

Note: there is an ambiguity here between assignment expressions and inline variable declarations. This ambiguity is re-
solved in favor of interpreting the resource expression as a variable declaration. Therefore, a resource expression in a try

clause may not be an assignment expression.

A destroyable resource expression is:

• an instantiation expression, or

• an inline variable declaration together with an instantiation expression.

The instantiation expression must be of type assignable to Destroyable in ceylon.language.

An obtainable resource expression is:

• an expression, or

• an inline variable declaration together with an expression.

The expression must be of type assignable to Obtainable in ceylon.language.

If no type is explicitly specified for a resource variable, the type of the variable is inferred to be the type of the expression.

try (File(path).lock) {
file.open(write);
...

}
catch (FileNotFoundException fnfe) {

print("file not found: ``path``");
}
catch (FileReadException fre) {

print("could not read from file: ``path``");
}

Statements, blocks, and control structures

Project Ceylon: 1.2 96

finally {
assert (file.closed);

}

try (Transaction()) {
try (s = Session()) {

return s.get(Person, id);
}
catch (NotFoundException|DeletedException e) {

return null;
}

}

5.5.6. Assertions

An assertion has an asserted condition list and, optionally, an annotation list.

Assertion: Annotations "assert" ConditionList ";"

The message carried by the assertion failure may be specified using a doc annotation.

"total must be less than well-defined bound"
assert (exists bound, total<bound);

If the assertion contains an assignability, existence, or nonemptiness condition containing a value reference then the com-
piler treats the referenced value as having a narrowed type at program elements that occur in the lexical scope of the asser-
tion.

{Element*} elements = ... ;
assert (nonempty elements);
Element first = elements.first;

TODO: how can we support interpolation in the assertion failure message?

assert (total<bound)
else "total must be less than ``bound``";

Statements, blocks, and control structures

Project Ceylon: 1.2 97

Chapter 6. Expressions

An expression produces a value when executed. An algorithm expressed using functions and expressions, rather than se-
quences of statements is often easier to understand and refactor. Therefore, Ceylon has a highly flexible expressions syn-
tax. Expressions are formed from:

• literal values, string templates, and self references,

• evaluation and assignment of values,

• invocation of functions and instantiation of classes,

• callable references, static references, and anonymous functions,

• comprehensions,

• metamodel references,

• enumeration of iterables and tuples, and

• operators.

Ceylon expressions are validated for typesafety at compile time. To determine whether an expression is assignable to a
program element such as a value or parameter, Ceylon considers the type of the expression (the type of the objects that are
produced when the expression is evaluated). An expression is assignable to a program element if the type of the expression
is assignable to the declared type of the program element.

Within a dynamic block, an expression may have no type, in the sense that its type can not be determined using static ana-
lysis of the code.

6.1. Literal values

Ceylon supports literal values of the following types:

• Integer and Float,

• Character, and

• String.

The types Integer, Float, Character, and String are defined in the module ceylon.language.

Note: Ceylon does not need a special syntax for Boolean literal values, since Boolean is just a class with the cases true

and false. Likewise, null is just the singleton value of an anonymous class.

Literal: IntegerLiteral | FloatLiteral | CharacterLiteral | StringLiteral | VerbatimStringLiteral

All literal values are instances of immutable types. The value of a literal expression is an instance of the type. How this in-
stance is produced is not specified here.

6.1.1. Integer number literals

An integer literal, as defined in §2.4.1 Numeric literals, is an expression of type Integer, representing a numeric integer.

Integer five = 5;

Integer mask = $1111_0000;

Integer white = #FFFF;

6.1.2. Floating point number literals

Project Ceylon: 1.2 98

A floating point literal, as defined in §2.4.1 Numeric literals, is an expression of type Float, a floating-point representation
of a numeric value.

shared Float pi = 3.14159;

6.1.3. Character literals

A single character literal, as defined in §2.4.2 Character literals, is an expression of type Character, representing a single
32-bit Unicode character.

if (exists ch=string[i], ch == '+') { ... }

6.1.4. Character string literals

A character string literal or verbatim string, as defined in §2.4.3 String literals, is an expression of type String, represent-
ing a sequence of Unicode characters.

person.name = "Gavin King";

print("Melbourne\tVic\tAustralia\nAtlanta\tGA\tUSA\nGuanajuato\tGto\tMexico\n");

String verbatim = """A verbatim string can have \ or a " in it."""";

6.2. String templates

A character string template contains interpolated expressions, surrounded by character string fragments.

StringTemplate: StringStart Expression (StringMid Expression)* StringEnd

Each interpolated expression contained in the string template must have a type assignable to Object defined in
ceylon.language.

print("Hello, ``person.firstName`` ``person.lastName``, the time is ``Time()``.");

print("1 + 1 = ``1 + 1``");

A string template is an expression of type String.

6.3. Self references

The type of the following expressions depends upon the context in which they appear.

SelfReference: "this" | "super" | "outer"

A self reference expression may not occur outside of a class or interface body.

The immediately containing class or interface for a program element is the class or interface in which the program element
occurs, and which contains no other class or interface in which the program element occurs. If there is no such class or in-
terface, the program element has no immediately containing class or interface.

A this, outer, or super self reference must have an immediately containing class or interface. An outer self reference
must have an immediately containing class or interface for its immediately containing class or interface.

Note: the keyword package is not an expression, and thus does not have a well-defined type. However, it may be used to
qualify and disambiguate a value reference or callable reference. A value reference or callable reference qualified by the
keyword package always refers to a toplevel member of the containing package, never to an imported declaration or nes-
ted declaration, as defined by §5.1.7 Unqualified reference resolution.

Expressions

Project Ceylon: 1.2 99

6.3.1. this

The keyword this refers to the current instance, as defined in §8.2.3 Current instance of a class or interface, of the imme-
diately containing class or interface (the class or interface in which the expression appears). Its type is the applied type
formed by the immediately containing class or interface with its own type parameters as type arguments.

6.3.2. outer

The keyword outer refers to the current instance, as defined in §8.2.3 Current instance of a class or interface, of the class
or interface which immediately contains the immediately containing class or interface. Its type is the applied type formed
by this class or interface with its own type parameters as type arguments.

6.3.3. super

The keyword super refers to the current instance of the immediately containing class or interface. Its type is the intersec-
tion of the principal instantiation of the immediate superclass for the immediately containing class or interface, as defined
in §3.7.4 Principal instantiation of a supertype, with all principal instantiations of immediate superinterfaces of the imme-
diately containing class or interface. A member reference such as super.x may not resolve to a formal declaration, nor to
any member inherited from more than one supertype of the intersection type.

As an exception to this, when the keyword super occurs in an extends clause, as specified in §3.3.2 Extension, it refers to
the current instance of the class or interface which immediately contains the declaration to which the extends clause be-
longs. Its type is the intersection of the principal instantiation of the immediate superclass of this containing class or inter-
face, with all principal instantiations of immediate superinterfaces of this containing class or interface.

The keyword super may occur as the first operand of an of operator, in which case the second operand is the principal in-
stantiation of some supertype of the class for the immediately containing class or interface. The expression (super of

Type) has type Type. A member reference such as (super of Type).x may not resolve to a formal member, nor to any
member inherited from more than one supertype of Type, nor to any member that is refined by the class or any intermedi-
ate supertype of the class.

6.4. Anonymous functions

An anonymous function is a function, as specified in §4.7 Functions, with no name, defined within an expression. It com-
prises one or more parameter lists, followed by an expression or a block of code.

FunctionExpression: ("function" | "void")? Parameters+ (LazySpecifier | Block)

The parameters are the parameters of the function. The lazy specifier or block of code is the implementation of the func-
tion.

An anonymous function may be considered void:

• if the void keyword is specified, the function is a void function, or

• if the function keyword is specified, the function is not a void function, or,

• otherwise, the function is void if and only if it is defined using a block in which no return statement with an expres-
sion occurs sequentially, as defined in §5.1 Block structure and references.

If the function is not considered void, then its return type is inferred.

The type of an anonymous function expression is the callable type of the function, as specified in §4.7.1 Callable type of a
function.

(Value x, Value y) => x<=>y

void (String name) => print(name)

(String string) {
value mid = string.size / 2;
return [string[...mid],string[mid+1...]];

Expressions

Project Ceylon: 1.2 100

}

An anonymous function occurring in an extends clause may not contain a reference to a variable value.

Note: evaluation of an anonymous function expression, as defined in §8.4.5 Evaluation of anonymous functions results in
instantiation of an object of type Callable. However, the members of this object are never in scope, do not hide other de-
clarations, and are not referenceable from within the anonymous function.

Note: there is almost no semantic difference between the following function declarations:

Float f(Float x)(Float y) => x*y;

Float(Float) f(Float x) => (Float y) => x*y;

The first form is strongly preferred.

6.4.1. Anonymous function parameter type inference

If the type of a parameter of an anonymous function is not declared explicitly, then the type of the parameter may in cer-
tain cases be inferred if the anonymous function occurs:

• as a listed argument, as defined in §6.6.4 Listed arguments, in a positional argument list, or

• as a specified argument, anonymous argument, or listed argument, as defined in §6.6.8 Named argument lists, in a
named argument list.

Suppose the type of the ith parameter p of an anonymous function is not declared explicitly, and further suppose that the
anonymous function occurs as the argument to a parameter x of some function or class in a direct invocation expression, as
defined in §6.6.1 Direct invocations.

Then the type of p may be inferred if either:

• the function or class has no type parameters, or the invocation has an explicit type argument list, and x is a callable
parameter with the same number of parameters as the anonymous function, and with ith parameter q,

• the function or class has at least one type parameter, and the invocation has no explicit type argument list, and x is a
callable parameter with the same number of parameters as the anonymous function, and the type of the ith parameter q
of x does not involve any of the type parameters of the generic function or class, or

• x is a value parameter whose type does not involve any of the type parameters of the generic function or class and rep-
resents a function with the same number of parameters as the anonymous function, and with ith parameter q, according
to §4.7.1 Callable type of a function.

Then the type of p is inferred to be the type of q in the realization of the function or class, as defined in §3.7.7 Realizations.

Otherwise, suppose the type of the ith parameter p of an anonymous function is not declared explicitly, and further sup-
pose that the anonymous function occurs as the nth argument in the positional argument list of an indirect invocation ex-
pression.

Then if the callable type of the invoked expression represents a function whose nth parameter is a callable parameter with
the same number of parameters as the anonymous function, according to §4.7.1 Callable type of a function, then the type
of p is inferred to be the type of the corresponding ith parameter of this callable parameter.

That is, if the type of the invoked expression is R(*T) where T is a tuple type whose nth element type is P(*S) and S is in
turn a tuple type whose ith element type is Q, then Q is the inferred type of p.

6.5. Compound expressions

An atom is a literal or self reference, a string template, a base expression, an iterable or tuple enumeration, an anonymous
class expression, a metamodel or reference expression, or a parenthesized expression.

Atom: LiteralExpression | BaseExpression | DelimitedExpression | MetaExpression | SelfReference

Expressions

Project Ceylon: 1.2 101

LiteralExpression: Literal | StringTemplate

DelimitedExpression: GroupedExpression | Enumeration | ObjectExpression

MetaExpression: Meta | Dec

A primary is formed by recursively forming member expressions, static expressions, invocation expressions, and index ex-
pressions from an initial atom, using the operators in the first row of the table of operator precedence and associativity in
§6.8.1 Operator precedence.

Primary: Atom | QualifiedExpression | Invocation | IndexedExpression

QualifiedExpression: MemberExpression | ConstructorExpression | StaticExpression

More complex expressions are formed by combining expressions using operators, including assignment operators, as
defined in §6.8 Operators, and using inline conditional expressions and anonymous functions.

ValueExpression: Primary | OperatorExpression

Expression: ValueExpression | FunctionExpression | LetExpression | ConditionalExpression

Note: the grammar of operator expressions is defined by the table of operator precedence and associativity in §6.8.1 Op-
erator precedence. Thus, the rules OperatorExpression and IndexedExpression are not defined in BNF.

Parentheses are used for grouping:

GroupedExpression: "(" Expression ")"

A compound expression occurring in a dynamic block, and involving a qualified or unqualified reference with no type, or a
reference to a declaration with no type, may also have no type.

In particular, if an operand expression has no type, and the type of the operator expression depends upon the type of the
operand, and the operator expression occurs within a dynamic block, then the whole operator expression has no type.

6.5.1. Base expressions

A base expression is an identifier, optionally qualified by the keyword package, with an optional list of type arguments:

BaseExpression: PackageQualifier? (MemberName | TypeName) TypeArguments?

A base expression is either:

• a reference to a toplevel function, toplevel value, or toplevel class,

• a reference within the lexical scope of the referenced function, value, constructor, or class, or

• a reference within the body of the referenced function, value, constructor, or class.

The referenced declaration is determined by resolving the unqualified reference as defined by §5.1.7 Unqualified reference
resolution. The unqualified realization for the unqualified reference is determined according to §3.7.7 Realizations.

The type argument list, if any, must conform, as defined by §3.6.3 Type arguments and type constraints, to the type para-
meter list of the unqualified realization.

If a base expression is a reference to an attribute, method, member class, or member class constructor of a class, the receiv-
ing instance is the current instance of that class, as defined by §8.2.3 Current instance of a class or interface. Otherwise,
there is no receiving instance.

6.5.2. Member expressions

A member expression is a receiver expression, followed by an identifier, with an optional list of type arguments.

Expressions

Project Ceylon: 1.2 102

MemberExpression: (Primary ".") (MemberName | TypeName) TypeArguments?

A member expression is a reference to a member of a type: an attribute, method, or member class.

The referenced member is determined by resolving the qualified reference as defined by §5.1.8 Qualified reference resolu-
tion. The qualified realization for the qualified reference is determined according to §3.7.7 Realizations.

The type argument list, if any, must conform, as defined by §3.6.3 Type arguments and type constraints, to the type para-
meter list of the qualified realization.

The receiver expression produces the instance upon which the member is invoked or evaluated. When a member expres-
sion is executed, the receiver expression is evaluated to produce the receiving instance which is held until the member is
invoked or evaluated, as defined in §8.4 Evaluation, invocation, and assignment.

6.5.3. Constructor expressions

A constructor expression is a base or member expression that references a class with constructors, followed by an identifi-
er, with an optional list of type arguments.

ConstructorExpression: (BaseExpression | MemberExpression) "." MemberName TypeArguments?

A constructor expression is a reference to a constructor of a class.

The referenced member is determined by resolving the qualified reference as defined by §5.1.8 Qualified reference resolu-
tion. The qualified realization for the qualified reference is determined according to §3.7.7 Realizations.

The type argument list, if any, must conform, as defined by §3.6.3 Type arguments and type constraints, to the type para-
meter list of the qualified realization.

If the constructor expression is qualified by a member expression, its receiver expression produces the instance upon
which the constructor is invoked. When a constructor expression is executed, the receiver expression is evaluated to pro-
duce the receiving instance which is held until the constructor is invoked or evaluated, as defined in §8.4 Evaluation, in-
vocation, and assignment.

6.5.4. Value references

A value reference is a base expression or member expression that references a value declaration or value constructor de-
claration.

The type of a value reference expression is the type of the realization of the referenced value or value constructor.

A value or value constructor declaration is never generic, so a value reference never has a type argument list.

A value reference that does not occur within any dynamic block may not refer to a value declaration or value parameter
with no type.

A value reference which occurs within a dynamic block and which does not reference any statically typed declaration, or
which references a value declaration or value parameter with no type, has no type.

If a base expression or member expression does not reference any statically typed declaration, and occurs within a dynamic

block, then it is considered a value reference.

6.5.5. Callable references

A callable reference is a base expression, member expression, or constructor expression that references something—a
function, class, or callable constructor—that can be invoked or instantiated by specifying a list of arguments.

If a callable reference refers to a class with a default constructor, the callable reference is considered a reference to the de-
fault constructor.

A callable reference may be invoked immediately, or it may be passed to other code which may invoke the reference. A
callable reference captures the return type and parameter list types of the function or class it refers to, allowing compile-

Expressions

Project Ceylon: 1.2 103

time validation of argument types when the callable reference is invoked.

The type of a callable reference expression is the callable type of the realization of the referenced function, class, or
callable constructor.

If a callable reference expression refers to a generic declaration, it must either:

• have an explicit type argument list,

• be immediately followed by an argument list, allowing the compiler to infer the type arguments, as defined in §3.6.5
Type argument inference, or,

• be the immediate child of a constructor expression that is immediately followed by an argument list, allowing the com-
piler to infer the type arguments, as defined in §3.6.5 Type argument inference, or

• occur as a listed argument, as defined in §6.6.4 Listed arguments in a positional argument list, or as a specified argu-
ment, anonymous argument, or listed argument, as defined in §6.6.8 Named argument lists, in a named argument list,
and its type arguments must be inferable as defined below.

A callable reference may not occur as the receiver expression of a member expression.

Note: this restriction exists to eliminate an ambiguity in the interpretation of static expressions such as Person.string

and Person.equals.

A callable reference that does not occur within any dynamic block may not refer to a function declaration with no return
type.

A callable reference which occurs within a dynamic block and which references a function declaration with no return type,
has no type.

Note: in a future release of the language, we would like to add a syntax for obtaining a callable reference to an attribute,
something like person.@name, to allow attributes to be passed by reference. This would also allow static references like
Person.@name.

If a callable reference f with no explicit type argument list occurs as the argument to a callable parameter p of a function
or class in a direct invocation expression, as defined below in §6.6.1 Direct invocations, then the type arguments of f are
inferred according to the rules defined in §3.6.5 Type argument inference as if the types of the parameters of p were the
types of listed arguments of f in a positional argument list, unless the invoked function or class is generic, and the invoca-
tion expression does not itself specify explicit type arguments, in which case any parameter whose type involves a type ar-
gument of the invoked function or class is ignored.

If a callable reference f with no explicit type argument list occurs as the argument to a value parameter p of type Re-

turn(*Args) in a direct or indirect invocation expression, then the type arguments of f are inferred according to the rules
defined in §3.6.5 Type argument inference as if Args were the type of a positional argument list, unless the invocation is a
direct invocation expression, and the invoked function or class is generic, and Args involves type parameters of the in-
voked function or class.

6.5.6. Static expressions

A static expression is a type, optionally qualifier by the keyword package, followed by an identifier, with an optional list
of type arguments.

StaticExpression: PackageQualifier? (TypeName TypeArguments? ".")+ (MemberName | TypeName) TypeArguments?

A static expression is a reference to a member of a type: an attribute, method, or member class, or to a constructor of a
member class of the type.

The referenced member is determined by resolving the qualified reference as defined by §5.1.8 Qualified reference resolu-
tion. The qualified realization for the qualified reference is determined according to §3.7.7 Realizations.

The type argument list, if any, must conform, as defined by §3.6.3 Type arguments and type constraints, to the type para-
meter list of the qualified realization.

Expressions

Project Ceylon: 1.2 104

Unlike member expressions, a static expression does not have a receiver expression. All static expressions are callable ex-
pressions which accept an argument of the specified type.

A static expression must reference a statically typed declaration with no missing types, even within a dynamic block.

If the qualifying type in a static expression refers to a generic declaration, then either:

• it must have an explicit type argument list, or

• the static expression must occur as a listed argument, as defined in §6.6.4 Listed arguments in a positional argument
list, or as a specified argument, anonymous argument, or listed argument, as defined in §6.6.8 Named argument lists, in
a named argument list, and its type arguments must be inferable as defined below.

If a static expression T.m for a generic type T with no explicit type argument list occurs as the argument to a parameter p of
type Return(*Arg) in a direct or indirect invocation expression, then the type arguments of T are inferred according to the
rules defined in §3.6.5 Type argument inference as if Arg were the type of a positional argument list, and [T] were the type
of a parameter list, unless the invocation is a direct invocation expression, and the invoked function or class is generic, and
Arg involves type parameters of the invoked function or class.

6.5.7. Static value references

A static value reference is a static expression that references an attribute declaration or member class value constructor de-
claration.

List<Anything>.size

The type of a static value reference expression is:

• X(T) for an attribute whose realization is of type X, and with qualifying type T, or

• T.X(T) for a member class value constructor whose realization is of type T.X, and with qualifying type T.X.

A value or value constructor declaration is never generic, so a static value reference never ends in a type argument list.

6.5.8. Static callable references

A static callable reference is a static expression that references something—a method or member class, or a callable con-
structor of a member class—that can be invoked or instantiated.

List<String>.filter

Iterable<Integer>.map<String>

The type of a static callable reference expression is:

• R(*A)(T) for a method, member class, or member class constructor whose realization has callable type R(*A), and with
qualifying type T, or

• T.X(*A)(T) for a member class constructor whose realization has callable type T.X(*A), and with qualifying type T.X.

If a callable reference expression refers to a generic declaration, it must end in an explicit type argument list.

6.6. Invocation expressions

A callable expression—any expression of type Callable—is invokable. An invocation consists of an invoked expression,
together with an argument list and, optionally, an explicit type argument list.

Invocation: Primary Arguments

The invoked expression must be of type R(*P) for some types R and P. Then the type of the invocation expression is

Expressions

Project Ceylon: 1.2 105

simply R.

If the invoked expression has no type, and occurs within a dynamic block, then the whole invocation expression has no
type, and the argument list is not type-checked at compile time, unless it is a direct invocation expression.

An invocation expression must specify arguments for parameters of the callable object, either as a positional argument list,
or as a named argument list.

Arguments: PositionalArguments | NamedArguments

Every argument list has a type, as specified below in §6.6.7 Positional argument lists and §6.6.8 Named argument lists. If
an invocation is formed from a callable expression of type exactly R(*P) and an argument list of type A, then A must be a
subtype of P.

6.6.1. Direct invocations

Any invocation expression where the invoked expression is a callable reference expression is called a direct invocation ex-
pression of the function, class, or callable constructor to which the callable reference refers.

TODO: Should we consider x{y=1;}{z=2;} a legal direct invocation if x has multiple parameter lists?

In a direct invocation expression:

• the compiler has one item of additional information about the schema of the method or class that is not reified by the
Callable interface: the names of the parameters of the function, class, or callable constructor, and therefore named ar-
guments may be used, and

• type argument inference is possible, as defined in §3.6.5 Type argument inference, since the compiler has access to the
type parameters and constraints of the function or class, or of the class to which the callable constructor belongs.

If an invocation expression has a named argument list, it must be a direct invocation.

The type of a direct invocation expression is the return type of the realization of the function, or the type of the realization
of the class, as defined in §3.7.7 Realizations.

If the function has no return type, and occurs within a dynamic block, then the whole direct invocation expression has no
type.

In a direct invocation expression of a function, class, or callable constructor, the restriction above on the argument list type
is equivalent to the following requirements. Given the parameter list of the realization of the function, class, or callable
constructor, and the arguments of the direct invocation:

• for each required parameter, an argument must be given,

• for each defaulted parameter, an argument may optionally be given,

• if the parameter list has a variadic parameter of type T+, one or more arguments must be given,

• if the parameter list has a variadic parameter of type T*, one or more arguments may optionally be given,

• no additional arguments may be given,

• for a required or defaulted parameter of type T, the type of the corresponding argument expression must be assignable
to T, and

• for a variadic parameter of type T* or T+, the type of every corresponding argument expression must be assignable to T.

Furthermore, if type argument are inferred, then the inferred type arguments must conform, as defined by §3.6.3 Type ar-
guments and type constraints, to the type parameter list of the realization of the function or class, or class to which the
callable constructor belongs.

If an argument expression has no type, or if its parameter has no type, and the invocation occurs within a dynamic block,
then the argument is not type-checked at compile time.

Expressions

Project Ceylon: 1.2 106

An invocation expression that does not occur within any dynamic block may not assign an argument to a value parameter
with no type.

6.6.2. Default arguments

When no argument is assigned to a defaulted parameter by the caller, the default argument defined by the parameter de-
claration of the realization, as defined by §3.6.3 Type arguments and type constraints, of the function, class, or callable
constructor is used. The default argument expression is evaluated every time the method is invoked with no argument spe-
cified for the defaulted parameter.

This class:

shared class Counter(Integer initialCount=0) { ... }

May be instantiated using any of the following invocations:

Counter()

Counter(1)

Counter {}

Counter { initialCount=10; }

6.6.3. The type of a list of arguments

A list of arguments may be formed from:

• any number of listed arguments, optionally followed by either

• a spread argument, or

• a comprehension.

ArgumentList: ((ListedArgument ",")* (ListedArgument | SpreadArgument | Comprehension))?

Every such list of arguments has a type, which captures the types of the individual arguments in the list. This type is al-
ways a subtype of Anything[]. The type of an empty list of arguments is [].

6.6.4. Listed arguments

A listed argument is an expression.

ListedArgument: Expression

If a listed argument is an expression of type T, and a list of arguments has type P with principal instantiation Sequen-

tial<Y>, then the type of a new argument list formed by prepending the expression to the first parameter list is
Tuple<T|Y,T,P>.

6.6.5. Spread arguments

A spread argument is an expression prefixed by the spread operator *.

SpreadArgument: "*" ValueExpression

The spread operator is parsed with a precedence just lower than the multiplication operator * and just higher than the set
union and complement operators | and ~, and is not associative.

Note: this restriction means that the symbol * always has the same precedence, wherever it occurs in the language.

Expressions

Project Ceylon: 1.2 107

The expression type T must have the principal instantiation {X*} for some type X. We form the sequential type of a spread
argument as follows:

• if the expression type T is an invariant subtype of X[], for some type X then the sequential type of the spread argument
is T, or, if not,

• if the expression type T is an invariant subtype of {X+}, for some type X then the sequential type of the spread argument
is [X+], or, otherwise,

• the expression type T is an invariant subtype of {X*}, for some type X and the sequential type of the spread argument is
X[].

When a spread argument with an expression type not assignable to Anything[] is evaluated, the elements of the iterable
automatically are packaged into a sequence.

Note: the spread "operator" is not truly an operator in the sense of §6.8 Operators, and so a spread argument is not an ex-
presson. An expression, when evaluated, produces a single value. The spread operator produces multiple values. It is
therefore more correct to view the spread operator as simply part of the syntax of an argument list.

The type of a list of arguments containing only a spread argument of sequential type S is simply S.

6.6.6. Comprehensions

A comprehension accepts one or more streams of values and produces a new stream of values. Any instance of Iterable
is considered a stream of values. The comprehension has two or more clauses:

• A for clause specifies a source stream and an iterator pattern, as defined in §5.5.3 for/else, representing the values pro-
duced by the stream.

• An if clause specifies a condition list, as defined in §5.4 Conditions, used to filter the values produced by the source
stream or streams.

• An expression clause produces the values of the resulting stream.

Every comprehension begins with a for or if clause, and ends with an expression clause. There may be any number of in-
tervening for or if clauses. Each clause in the comprehension is considered a child of the clause that immediately pre-
cedes it.

Comprehension: ForComprehensionClause | IfComprehensionClause

ForComprehensionClause: "for" ForIterator ComprehensionClause

IfComprehensionClause: "if" ConditionList ComprehensionClause

ComprehensionClause: ForComprehensionClause | IfComprehensionClause | Expression

An expression that occurs in a child clause may refer to iteration variables and condition variables declared by parent
clauses. The types of such variables are specified in §5.5 Control structures and assertions.

Note: each child clause can be viewed as a body nested inside the parent clause. The scoping rules for variables declared
by comprehension clauses reflects this model.

The type of a list of arguments containing only a comprehension is [T*] where T is the type of the expression which ter-
minates the comprehension, or [T+] if there are no if clauses, and if every for clause has an iterated expression of
nonempty type.

An comprehension occurring in an extends clause may not contain a reference to a variable value.

Note: a comprehension, like a spread argument, is not considered an expression. An expression, when evaluated, produces
a single value. A comprehension produces multiple values, like a spread argument, or like a series of listed arguments.
Therefore, a comprehension may only appear in an argument list or an enumeration expression. This is, however, no limit-
ation; we can simply wrap the comprehension in braces in order to get an expression of type {T*}, or in brackets to get an

Expressions

Project Ceylon: 1.2 108

expression of type [T*].

TODO: properly define how expressions with no type occurring in a dynamic block affect comprehensions.

6.6.7. Positional argument lists

When invocation arguments are listed positionally, the argument list is enclosed in parentheses.

PositionalArguments: "(" ArgumentList ")"

The type of the positional argument list is the type of the list of arguments it contains.

6.6.8. Named argument lists

When invocation arguments are listed by name, the argument list is enclosed in braces.

NamedArguments: "{" NamedArgument* ArgumentList "}"

Named arguments may be listed in a different order to the corresponding parameters.

Each named argument in a named argument list is either:

• an anonymous argument—an expression, with no parameter name explicitly specified,

• a specified argument—a specification statement where name of the value of function being specified is interpreted as
the name of a parameter, or

• an inline getter, function, or anonymous class declaration, whose name is interpreted as the name of a parameter.

NamedArgument: AnonymousArgument | SpecifiedArgument | InlineDeclarationArgument

Additionally, a named argument list has an ordinary list of arguments, which may be empty. This argument list is inter-
preted as a single argument to a parameter of type Iterable.

{ initialCapacity=2; "hello", "world" }

{ initialCapacity=people.size; loadFactor=0.8; for (p in people) p.name->p }

Note: in a future release of the language, we would like to be able to assign a local name to an anonymous argument or
listed argument, allowing it to be referenced later in the argument list. We might consider this a kind of "let" expression,
perhaps.

Given a parameter list, and a named argument list, we may attempt to construct an equivalent positional argument list as
follows:

• Taking each argument in the named argument list in turn, on the order they occur lexically:

• if the argument is anonymous, assign it to the first unassigned parameter of the parameter list, or

• if the argument is named, assign it to the parameter with that name in the parameter list.

If for any argument, there is no unassigned parameter, no parameter with the given name, or the parameter with the
given name has already been assigned an argument, construction of the positional argument list fails, and the invoca-
tion is not well-typed.

• Next, if the parameter list has an unassigned parameter of type exactly Iterable<T,N> for some types T and N, then an
iterable enumeration expression, as defined in §6.6.12 Iterable and tuple enumeration, is formed from the ordinary list
of arguments, and assigned to that parameter.

If there is no such parameter, and the ordinary list of arguments is nonempty, then construction of the positional argu-
ment list fails, and the invocation is not well-typed.

Expressions

Project Ceylon: 1.2 109

• Finally, we assign each unassigned defaulted parameter its default argument.

The resulting equivalent positional argument list is formed by ordering the arguments according to the position of their
corresponding parameters in the parameter list, and then replacing any inline value, function, or object declarations with a
reference to the declaration.

The type of a named argument list is the type of the equivalent positional argument list.

6.6.9. Anonymous arguments

An anonymous argument is just an expression followed by a semicolon.

AnonymousArgument: Expression ";"

The type of the argument is the type of the expression.

{
Head { title="Hello"; };
Body {

Div { "Hello ``name``!" };
};

}

6.6.10. Specified arguments

A specified argument is a value specification statement or lazy specification statement, as defined in §5.3.3 Specification
statements, where the value reference or callable reference is treated as the name of a parameter of the invoked function or
class instead of using the usual rules for resolving unqualified names.

SpecifiedArgument: Specification

• If a specified argument is a value specification statement, its type is the type of the specified expression.

• If a specified argument is a lazy specification statement with no parameter lists, its type is the type of the specified ex-
pression.

• Otherwise, if it is a lazy specification statement with a parameter list, its type is the callable type formed from the type
of the expression, interpreted as a function return type, and the types of its parameter lists, according to §4.7.1 Callable
type of a function.

Note: there is an ambiguity here between assignment expressions and specified arguments. This ambiguity is resolved in
favor of interpreting the argument as a specified argument. Therefore an anonymous argument in a named argument list
may not be an assignment expression.

{
product = getProduct(id);
quantity = 1;

}

{
by(Value x, Value y) => x<=>y;

}

6.6.11. Inline declaration arguments

An inline declaration argument defines a getter, function, or anonymous class, and assigns it to a parameter.

InlineDeclarationArgument: ValueArgument | FunctionArgument | ObjectArgument

An inline getter argument is a streamlined value declaration, as defined in §4.8 Values. The type of the argument is the de-
clared or inferred type of the value.

ValueArgument: ValueHeader (Block | (Specifier | LazySpecifier) ";")

Expressions

Project Ceylon: 1.2 110

An inline function argument is a streamlined function declaration, as defined in §4.7 Functions. The type of the argument
is the callable type of the function, as defined by §4.7.1 Callable type of a function.

FunctionArgument: FunctionHeader (Block | LazySpecifier ";")

An inline anonymous class argument is a streamlined anonymous class declaration, as defined in §4.5.7 Anonymous
classes. The type of the argument is the anonymous class type.

ObjectArgument: ObjectHeader ClassBody

A named argument may not have type parameters or annotations.

{
description = "Total";
value amount {

variable Float total = 0.0;
for (Item item in items) {

sum += item.amount;
}
return total;

}
}

{
label = "Say Hello";
void onClick() {

say("Hello!");
}

}

{
function by(Value x, Value y) => x<=>y;

}

{
object iterator

satisfies Iterator<Order> {
variable value done = false;
shared actual Order|Finished next() {

if (done) {
return finished;

}
else {

done=true;
return order;

}
}

}
}

6.6.12. Iterable and tuple enumeration

An enumeration expression is an abbreviation for tuple and iterable object instantiation. Iterable enumerations are delim-
ited using braces. Tuple enumerations are delimited by brackets.

Enumeration: Iterable | Tuple | DynamicValue

Iterable: "{" ArgumentList "}"

Tuple: "[" ArgumentList "]"

The type of an iterable enumeration expression is:

• Iterable<Nothing,Null> if there are no argument expressions, or

• Iterable<U,Nothing> where U, the argument expression list is an invariant suptype of U[].

The type of a tuple enumeration expression is the type of the list of arguments it contains.

Expressions

Project Ceylon: 1.2 111

{String+} = { "hello", "world" };

[] none = [];

[Float,Float] xy = [x, y];

[Float,Float, String*] xy = [x, y, *labels];

Every argument expression must have a type, even if the enumeration expression occurs in a dynamic block.

6.6.13. Dynamic enumerations

A dynamic enumeration expression creates a new object with no class by enumerating its members, allowing interopera-
tion with dynamically typed native code.

DynamicValue: "dynamic" "[" NamedArgument* ArgumentList "]"

A dynamic enumeration expression has no type.

Any argument names may be specified in the named argument list.

A dynamic enumeration expression must occur inside a dynamic block.

The semantics of this construct are platform-dependent and beyond the scope of this specification.

6.7. Conditional expressions, let expressions, and anonymous class expressions

A conditional expression resembles a control structure but is part of the expression syntax, and evaluates to a value. A
conditional expression comes in one of two forms:

• an if/then/else expression resembles the if/else conditional defined in §5.5.1 if/else, and

• a switch/case/else expression resembles the switch/case/else conditional defined in §5.5.2 switch/case/else.

ConditionalExpression: IfElseExpression | SwitchCaseElseExpression

A let expression allows inline definition of a reference within an expression.

An inline class is an anonymous class defined within an expression.

6.7.1. if/then/else expressions

An if/then/else expression has a condition list, as defined in §5.4 Conditions, a then expression, and an else expres-
sion. The else expression is not optional.

IfElseExpression: "if" ConditionList ThenExpression ElseExpression

The type of an if/then/else expression with then expression of type X and else or else if expression of type Y is X|Y.

ThenExpression: "then" Expression

ElseExpression: "else" Expression

The expression following then or else is parsed with precedence just higher than the || operator, and just lower than the
then and else operators, that is, between the layers 3 and 4 defined in §6.8.1 Operator precedence.

Alternatively, the expression following then or else may be an if/then/else expression or a let expression.

Note: the expression following then or else may not be a switch/case/else expression, since that would introduce an
ambiguity related to the optional else clause of the switch/case/else expression.

Expressions

Project Ceylon: 1.2 112

if (exists lang) then lang.name else "Ceylon"

6.7.2. switch/case/else expressions

A switch/case/else expression has a switch expression or inline variable, a list of case expressions, and, optionally, an
else expression.

SwitchCaseElseExpression: Switch CaseExpression+ ElseExpression

The type of a switch/case/else expression with case expressions of type X1, X2, ..., Xn and else expression of type Y is
X1|X2|...|Xn|Y.

CaseExpression: "case" CaseCondition Expression

The expression following case or else is parsed with precedence just higher than the || operator, and just lower than the
then and else operators, that is, between the layers 3 and 4 defined in §6.8.1 Operator precedence.

Alternatively, the expression following then or else may be an if/then/else expression or a let expression.

Each case expression includes a value case or type case, as defined in §5.4.4 Case conditions. Just like in a switch/

case/else conditional statement:

• all cases must be disjoint, and

• if there is no else expression, the cases must be exhaustive.

switch (seq) case (null) "null" case (is []) "empty" else "nonempty"

6.7.3. Let expressions

A let expression comprises a pattern list, followed by an expression involving the pattern variables that occur in the listed
patterns.

LetExpression: "let" PatternList Expression

The expression is parsed with precedence just higher than the || operator, and just lower than the then and else operators,
that is, between the layers 3 and 4 defined in §6.8.1 Operator precedence.

Alternatively, the expression may be an if/then/else expression or another let expression.

A pattern list is enclosed in parentheses.

PatternList: "(" PatternListElement ("," PatternListElement)* ")"

Each element of the pattern list is a pattern, as defined in §5.2.2 Patterns, followed by a specified expression. The pat-
terned type is the type of the specified expression.

PatternListElement: Pattern Specifier

The pattern variables that occur in the pattern list are considered in scope in the expression that follows the pattern list.
Furthermore, a specified expression in the pattern list may refer to a pattern variable declared by an earlier element in the
pattern list.

let ([x,y] = loc, d = sqrt(x^2+y^2)) [x/d, y/d]

6.7.4. Inline anonymous class expressions

An inline anonymous class expression resembles an anonymous class declaration as defined in §4.5.7 Anonymous classes.
The expression defines the schema, supertypes, and implementation of a class. It does not specify a type name. Instead, the
type has a name assigned internally by the compiler that is not available at compilation time.

Expressions

Project Ceylon: 1.2 113

ObjectExpression: "object" ObjectInheritance ClassBody

The class:

• is implicitly final, and

• may not declare default members.

The type of an inline anonymous class expression is the intersection of the class type it extends with all interface types it
satisfies. The type of the inline anonymous class itself is not accessible outside the body of the inline anonymous class ex-
pression.

object
satisfies {Integer+} {

iterator() => object
satisfies Iterator<Integer> {

variable value current = 0;
next() => current++;

};
}

6.8. Operators

Operators are syntactic shorthand for more complex expressions involving invocation, evaluation, or instantiation. There is
no support for user-defined operator overloading:

• new operator symbols may not be defined outside of the operators specified below, and

• the definition of the operators specified below may not be changed or overloaded.

However, many of the operators below are defined in terms of default or formal methods or attributes. So, within well-
defined limits a concrete implementation may customize the behavior of an operator. This approach is called operator
polymorphism.

Some examples:

Float z = x * y + 1.0;

even = n % 2 == 0;

++count;

Integer j = i++;

if (x > 100 || x < 0) { ... }

User user = users[userId] else guest;

List<Item> firstPage = results[0..20];

for (n in 0:length) { ... }

if (char in 'A'..'Z') { ... }

String[] names = people*.name;

this.total += item.price * item.quantity;

Float vol = length^3;

Vector scaled = scale ** vector;

Expressions

Project Ceylon: 1.2 114

map.contains(person.name->person);

if (!document.internal || user is Employee) { ... }

6.8.1. Operator precedence

There are 19 distinct operator precedence levels, but these levels are arranged into layers in order to make them easier to
predict.

• Operators in layer 1 produce, transform, and combine values.

• Operators in layer 2 compare or predicate values, producing a Boolean result.

• Operators in layer 3 are logical operators that operate upon Boolean arguments to produce a Boolean value.

• Operators in layer 4 perform assignment and conditional evaluation.

Within each layer, postfix operators have a higher precedence than prefix operators, and prefix operators have a higher
precedence than binary operators.

There is a single exception to this principle: the binary exponentiation operator ^ has a higher precedence than the prefix
operators + and -. The reason for this is that the following expressions should be equivalent:

-x^2 //means -(x^2)

0 - x^2 //means 0 - (x^2)

This table defines the relative precedence of the various operators, from highest to lowest, along with associativity rules:

Table 6.1.

Operations Operators Type Associativ-
ity

Layer 1

Member invocation and selection, index, sub-
range:

., *., ?., (), {}, [], [:], [..], [...] Binary / N-ary Left

Postfix increment and decrement: ++, -- Unary postfix Left

Prefix increment and decrement: ++, -- Unary prefix Right

Exponentiation: ^ Binary Right

Negation: +, - Unary prefix Right

Set intersection: & Binary Left

Set union and complement: |, ~ Binary Left

Multiplication, division, remainder: *, /, % Binary Left

Scale: ** Binary Right

Addition, subtraction: +, - Binary Left

Range and entry construction: .., :, -> Binary None

Layer 2

Existence, emptiness: exists, nonempty Unary postfix None

Comparison, containment, assignability, inher-
itance:

<=>, <, >, <=, >=, in, is, of Binary (and tern-
ary)

None

Expressions

Project Ceylon: 1.2 115

Operations Operators Type Associativ-
ity

Equality, identity: ==, !=, === Binary None

Layer 3

Logical not: ! Unary prefix Right

Logical and: && Binary Left

Logical or: || Binary Left

Layer 4

Conditionals: then, else Binary Left

Assignment: =, +=, -=, *=, /=, %=, &=, |=, ~=, &&=,
||=

Binary Right

It's important to be aware that in Ceylon, compared to other C-like languages, the logical not operator ! has a very low pre-
cedence. The following expressions are equivalent:

!x.y == 0.0 //means !(x.y == 0.0)

x.y != 0.0

6.8.2. Operator definition

The following tables define the semantics of the Ceylon operators. There are six basic operators which do not have a defin-
ition in terms of other operators or invocations:

• the member selection operator . separates the receiver expression and member name in a member expression, as
defined above in §6.5.2 Member expressions,

• the argument specification operators () and {} specify the argument list of an invocation, as defined in §6.6 Invocation
expressions and §8.4.4 Invocation,

• the assignment operator = assigns a new value to a variable and returns the new value after assignment, as defined in
§8.4.3 Assignment,

• the identity operator === evaluates to true if its argument expressions evaluate to references to the same object, as
defined in §8.1 Object instances, identity, and reference passing, or to false otherwise,

• the assignability operator is evaluates to true if its argument expression evaluates to an instance of a class, as defined
in §8.1 Object instances, identity, and reference passing, that is a subtype of the specified type, or to false otherwise,
and

• the coverage operator of narrows or widens the type of an expression to any specified type that covers the expression
type, as defined by §3.4.1 Coverage, without affecting the value of the expression.

All other operators are defined below in terms of other operators and/or invocations.

6.8.3. Basic invocation and assignment operators

These operators support method invocation and attribute evaluation and assignment.

Table 6.2.

Example Name Definition LHS type RHS type Return type

Invocation

lhs.member member X a member of X, T

Expressions

Project Ceylon: 1.2 116

Example Name Definition LHS type RHS type Return type

of type T

lhs(x,y,z) or
lhs{a=x;b=y;}

invoke T(*P) argument list of
type P

T

Assignment

lhs = rhs assign variable of type
X

X X

Coverage

lhs of Type of X a literal type T

that covers X
T

6.8.4. Equality and comparison operators

These operators compare values for equality, order, magnitude, or membership, producing boolean values.

Table 6.3.

Example Name Definition LHS type RHS type Return type

Equality and identity

lhs === rhs identical X given X

satisfies

Identifiable

Y given Y

satisfies

Identifiable

where X&Y is not
Nothing

Boolean

lhs == rhs equal lhs.equals(rhs) Object Object Boolean

lhs != rhs not equal !lhs.equals(rhs) Object Object Boolean

Comparison

lhs <=> rhs compare lhs.compare(rhs) Comparable

<T>

T Comparison

lhs < rhs smaller lhs.compare(rhs)==smaller Comparable

<T>

T Boolean

lhs > rhs larger lhs.compare(rhs)==larger Comparable

<T>

T Boolean

lhs <= rhs small as lhs.compare(rhs)!=larger Comparable

<T>

T Boolean

lhs >= rhs large as lhs.compare(rhs)!=smaller Comparable

<T>

T Boolean

Containment

lhs in rhs in let (x=lhs)

rhs.contains(x)

Object Category Boolean

Assignability

rhs is Type is any type which
is not a subtype
of T, whose in-
tersection with
T is not Nothing

any literal type
T

Boolean

Expressions

Project Ceylon: 1.2 117

TODO: Should we have allow the operators <= and >= to handle partial orders? A particular usecase is Set comparison.

A bounded comparison is an abbreviation for two binary comparisons:

• l<x<u means let (t=x) l<t && t<u,

• l<=x<u means let (t=x) l<=t && t<u,

• l<x<=u means let (t=x) l<t && t<=u, and

• l<=x<=u means let (t=x) l<=t && t<=u

for expressions l, u, and x.

These abbreviations have the same precedence as the binary < and <= operators, and, like the binary forms, are not associ-
ative.

6.8.5. Logical operators

These are the usual logical operations for boolean values.

Table 6.4.

Example Name Definition LHS type RHS type Return type

Logical operators

!rhs not if (rhs) then false else

true

Boolean Boolean

lhs || rhs conditional
or

if (lhs) then true else

rhs

Boolean Boolean Boolean

lhs && rhs conditional
and

if (lhs) then rhs else

false

Boolean Boolean Boolean

Logical assignment

lhs ||= rhs conditional
or

if (lhs) then true else

lhs=rhs

variable of type
Boolean

Boolean Boolean

lhs &&= rhs conditional
and

if (lhs) then lhs=rhs

else false

variable of type
Boolean

Boolean Boolean

6.8.6. Operators for handling null values

These operators make it easy to work with optional expressions.

Table 6.5.

Example Name Definition LHS type RHS type Return type

Existence

lhs exists exists if (exists lhs) then true

else false

any type whose
intersections

with Object and
Null are not
Nothing

Boolean

lhs nonempty nonempty if (nonempty lhs) then

true else false

any subtype of
Anything[]?

whose intersec-

Boolean

Expressions

Project Ceylon: 1.2 118

Example Name Definition LHS type RHS type Return type

tions with []

and [Nothing+]

are not Nothing

Nullsafe invocation

lhs?.member nullsafe at-
tribute

if (exists lhs) then

lhs.member else null

X? an attribute of
type T of X

T?

lhs?.member nullsafe
method

X? a method of
callable type

T(*P) of X with
exactly one

parameter list

T?(*P)

6.8.7. Correspondence, subrange, and stream operators

These operators provide a simplified syntax for accessing values of a Correspondence, for obtaining subranges of Ranged
objects, and for spreading member access over a stream.

Table 6.6.

Example Name Definition LHS type RHS type Return type

Keyed item access

lhs[index] lookup lhs.get(index) Correspond-

ence<X,Y>

X Y?

Subranges

lhs[from:length

]

measured
subrange

lhs.measure(from,length) Ranged<X,Y,Z> X, Integer Z

lhs[from..to] spanned
subrange

lhs.span(from,to) Ranged<X,Y,Z> X, X Z

lhs[from...] upper
spanned
subrange

lhs.spanFrom(from) Ranged<X,Y,Z> X Z

lhs[...to] lower
spanned
subrange

lhs.spanTo(to) Ranged<X,Y,Z> X Z

Spread invocation

lhs*.attribute spread at-
tribute

[*lhs.map(X.attribute)] Iterable<X,N> attribute of X of
type T

[T*] or [T+]

lhs*.method spread
method

compose((Iterable<T,N>

ts)=>[*ts],

lhs.spread(X.method))

Iterable<X,N> method of X of
callable type
T(*P) with ex-
actly one para-

meter list

[T*](*P) or
[T+](*P)

Spread multiplication

lhs ** rhs scale rhs.scale(lhs) X Scalable<X,Y> Y

There are two special cases related to sequences. A type X is a sequence type if X is a subtype of Sequential<Anything>.

For any sequence type X with principal instantiation [E*] and integer n, we can form the nth tail type, Xn, of X as follows:

Expressions

Project Ceylon: 1.2 119

• for every i<=0, Xi is X,

• for every i>0, if Xi has the principal instantiation Tuple<Ui,Fi,Ti> then X(i+1) is Ti, or, if Xi has principal instanti-
ation [Fi*] then X(i+1) is [Fi*], or, otherwise, if Xi is [], then X(i+1) is also [].

For any sequence type X and integer n, we can form the nth element type, En, of X as follows:

• if n>=0 and Xn has the principal instantiation [Fn+] then En is Fn, or,

• otherwise, Xn has the principal instantiation [Fn*] and En is Fn?.

Then the two special cases are:

• The type of an expression of form x[i] where x is of the sequence type X and n is an integer literal is En.

• The type of an expression of form x[i...] where x is of the sequence type X and n is an integer literal is Xn if Xn is an
instantiation of Tuple, [Fn+] if Xn has the principal instantiation [Fn+], or [Fn*] if Xn has the principal instantiation
[Fn*].

6.8.8. Operators for creating objects

These operators simplify the syntax for instantiating certain commonly used built-in types.

Table 6.7.

Example Name Definition LHS type RHS type Return type

Range and entry constructors

lhs..rhs spanned
range

span(lhs, rhs) T given T

satisfies

Enumerable<T>

T Range<T>

lhs:rhs measured
range

measure(lhs,rhs) T given T

satisfies

Enumerable<T>

Integer Range<T>|[]

lhs->rhs entry Entry(lhs, rhs) U given U

satisfies Ob-

ject

V Entry<U,V>

6.8.9. Conditional operators

Two special operators allow emulation of the famous ternary operator of C-like languages.

Table 6.8.

Example Name Definition LHS type RHS type Return type

Conditionals

lhs then rhs then if (lhs) then rhs else

null

Boolean T given T

satisfies Ob-

ject

T?

lhs else rhs else if (exists lhs) then lhs

else rhs

U such that null
is U

V U&Object|V

6.8.10. Arithmetic operators

Expressions

Project Ceylon: 1.2 120

These are the usual mathematical operations for all kinds of numeric values.

Table 6.9.

Example Name Definition LHS type RHS type Return type

Increment, decrement

++rhs successor rhs=rhs.successor variable of type
Ordinal<T>

T

--rhs predecessor rhs=rhs.predecessor variable of type
Ordinal<T>

T

lhs++ increment variable of type
Ordinal<T>

T

lhs-- decrement variable of type
Ordinal<T>

T

Numeric operators

+rhs rhs Invertible

<I>

I

-rhs negation rhs.negated Invertible

<I>

I

lhs + rhs sum lhs.plus(rhs) Summable<X> X X

lhs - rhs difference lhs.minus(rhs) Invertible

<X>

X X

lhs * rhs product lhs.times(rhs) Numeric<X> X X

lhs / rhs quotient lhs.divided(rhs) Numeric<X> X X

lhs % rhs remainder lhs.remainder(rhs) Integral<X> X X

lhs ^ rhs power lhs.power(rhs) Exponentiable

<X,Y>

Y X

Numeric assignment

lhs += rhs add lhs=lhs.plus(rhs) variable of type
Summable<N>

N N

lhs -= rhs subtract lhs=lhs.minus(rhs) variable of type
Invertible

<N>

N N

lhs *= rhs multiply lhs=lhs.times(rhs) variable of type
Numeric<N>

N N

lhs /= rhs divide lhs=lhs.divided(rhs) variable of type
Numeric<N>

N N

lhs %= rhs remainder lhs=lhs.remainder(rhs) variable of type
Integral<N>

N N

The postfix increment and decrement operators are defined as follows:

• x++ means the value of result after executing X result=x; ++x;, and

• x-- means the value of result after executing X result=x; --x;.

Arithmetic operators automatically widen from Integer to Float when necessary. If one operand expression is of static

Expressions

Project Ceylon: 1.2 121

type Integer, and the other is of type Float, the operand of type Integer is widened to a Float in order to make the oper-
ator expression well-typed. Widening is performed by evaluating the attribute float defined by Integer.

Note: this is the only circumstance in the language where implicit type conversion occurs. In fact, it is more correct to
view this behavior as an instance of operator overloading than as an implicit type conversion. Implicit widening does not
occur when an expression of type Integer is merely assigned to the type Float, since such behavior would result in ambi-
guities when generics come into play.

6.8.11. Set operators

These operators provide traditional mathematical operations for sets.

Table 6.10.

Example Name Definition LHS type RHS type Return type

Set operators

lhs | rhs union lhs.union(rhs) Set<X> Set<Y> Set<X|Y>

lhs & rhs intersection lhs.intersection(rhs) Set<X> Set<Y> Set<X&Y>

lhs ~ rhs comple-
ment

lhs.complement(rhs) Set<X> Set<Object> Set<X>

Set assignment

lhs |= rhs union lhs=lhs|rhs variable of type
Set<X>

Set<X> Set<X>

lhs &= rhs intersection lhs=lhs&rhs variable of type
Set<X>

Set<Object> Set<X>

lhs ~= rhs comple-
ment

lhs=lhs~rhs variable of type
Set<X>

Set<Object> Set<X>

6.9. Metamodel expressions

A metamodel expression is a reference to a type, a class, a function, a value, or a constructor. It evaluates to a metamodel
object whose static type captures, respectively:

• the type itself,

• the callable type of the class,

• the callable type of the function,

• the type of the value,

• the type of the value constructor, or

• the callable type of the callable constructor.

Meta: TypeMeta | BaseMeta | MemberMeta | ConstructorMeta

A type metamodel expression is a type, as defined by §3.2 Types, surrounded by backticks.

TypeMeta: "`" Type "`"

The type may or may not be a reference to a class or interface.

Class<Person,[Name]> personClass = `Person`;

Expressions

Project Ceylon: 1.2 122

Interface<List<String>> stringListInterface = `List<String>`;

UnionType<Integer|Float> numberType = `Number`;

Type<Element> elementType = `Element`;

A base metamodel expression is a member name, with an optional list of type arguments, surrounded by backticks.

BaseMeta: "`" PackageQualifier? MemberName TypeArguments? "`"

A base metamodel expression is a reference to a value or function. The referenced declaration is determined according to
§5.1.7 Unqualified reference resolution.

A member metamodel expression is a qualifier, followed by a member name, with an optional list of type arguments, sur-
rounded by backticks.

MemberMeta: "`" PrimaryType "." MemberName TypeArguments? "`"

The member metamodel expression is qualified by a type, as defined by §3.2 Types.

A member metamodel expression is a reference to an attribute or method of the type identified by the qualifier. The mem-
ber is resolved as a member of the type according to §5.1.8 Qualified reference resolution.

Function<Float,[{Float+}]> sumFunction = `sum<Float>`;

Attribute<Person,String> personNameAttribute = `Person.name`;

Method<Person,Anything,[String]> personSayMethod = `Person.say`;

Attribute<\Isystem,Integer> systemMillis = `\Isystem.milliseconds`;

A constructor metamodel expression is a qualifier, followed by a constructor name, with an optional list of type argu-
ments, surrounded by backticks.

ConstructorMeta: "`" PrimaryType "." ()MemberName | TypeName) TypeArguments? "`"

The constructor metamodel expression qualifier is a type that is an instantiation of a class.

A constructor metamodel expression is a reference to a constructor or of the class identified by the qualifier. The construct-
or is resolved as a member of the class according to §5.1.8 Qualified reference resolution.

Type argument inference is impossible in a metamodel expression, so type arguments must be explicitly provided for
every generic declaration.

6.9.1. Type of a metamodel expression

The type of a metamodel expression depends upon the kind of declaration referenced:

• for a toplevel value of type R, the type is Value<R>,

• for a toplevel function of callable type R(*P), the type is Function<R,P>,

• for a toplevel class of callable type R(*P), the type is Class<R,P>,

• for a callable constructor of a toplevel class of callable type R(*P), the type is CallableConstructor<R,P>,

• for a value constructor of a toplevel class of type R, the type is ValueConstructor<R>,

• for a class nested in a block of callable type R(*P), the type is Class<R,Nothing>, and

• for a toplevel interface or interface nested in a block of type R, the type is Interface<R>.

Expressions

Project Ceylon: 1.2 123

Note: members of anonymous classes are treated as toplevels here.

Furthermore, given a member of a type T:

• for an attribute of type R, the type is Attribute<T,R>,

• for a method of callable type R(*P), the type is Method<T,R,P>,

• for a member class of callable type R(*P), the type is MemberClass<T,R,P>, and

• for a callable constructor of a member class of callable type R(*P), the type is MemberClassCallableConstruct-

or<T,R,P>, and

• for a value constructor of a member class of type R, the type is MemberClassValueConstructor<T,R>, and

• for a value of a member class of type R, the type is Attribute<T,R>, and

• for a nested interface of type R, the type is MemberInterface<T,R>.

Finally:

• for a union type T, the type is UnionType<T>,

• for an intersection type T, the type is IntersectionType<T>,

• for the type Nothing, the type is Type<Nothing>, and

• for a type parameter T, the type is Type<T>.

If a type alias occurs inside a typed metamodel expression, it is replaced by its definition, after substituting type argu-
ments, before determining the type of the metamodel expression.

6.10. Reference expressions

A reference expression is a reference to a program element and evaluates to a detyped metamodel of the program element.
Reference expressions are used primarily in annotations, especially the documentation annotations listed in §7.4.2 Docu-
mentation. A reference expression may refer to:

• a class, interface, type alias, or type parameter,

• a function or value,

• a constructor, or

• a package or module.

Dec: TypeDec | MemberDec | ConstructorDec | PackageDec | ModuleDec

6.10.1. Declaration references

Declaration reference expressions may be qualified by a member declaration qualifier, a sequence of identifiers identify-
ing a class or interface declaration or an anonymous class declaration:

MemberDecQualifier: ((TypeName | MemberName) ".")+

Each identifier in the member declaration qualifier is the name of a class, interface, or anonymous class.

A class reference expression, interface reference expression, alias reference expression, or type parameter reference ex-
pression is an optional member declaration qualifier, followed by the name of a class or anonymous class, interface, alias,
or type parameter, with the keyword class, interface, alias, or given, respectively, surrounded by backticks.

TypeKeyword: "class" | "interface" | "alias" | "given"

Expressions

Project Ceylon: 1.2 124

TypeDec: "`" TypeKeyword (PackageQualifier? MemberDecQualifier? (TypeName | MemberName))? "`"

For a class or interface reference expression, the name of the class or interface is optional. In this case, the class or inter-
face reference is to the immediately containing class or interface, if any, as defined in §6.3 Self references. For alias or
type parameter reference expressions, the name of the alias or type parameter is required.

ClassDeclaration thisClass = `class`;

ClassDeclaration personClass = `class Person`;

ClassDeclaration thisInterface = `interface`;

InterfaceDeclaration stringListInterface = `interface List`;

AliasDeclaration numberAlias = `alias Number`;

TypeParameter elementTypeParameter = `given Element`;

CallableConstructorDeclaration arrayOfSizeConstructor = `new Array.ofSize`;

A value reference expression or function reference expression is an optional member declaration qualifier, followed by the
name of a function, value, value constructor, or anonymous class, with the keyword value or function, surrounded by
backticks.

MemberKeyword: "value" | "function"

MemberDec: "`" MemberKeyword PackageQualifier? MemberDecQualifier? MemberName "`"

A constructor reference expression is a member declaration qualifier, followed by the name of a callable constructor, with
the keyword new, surrounded by backticks.

ConstructorKeyword: "new"

ConstructorDec: "`" ConstructorKeyword PackageQualifier? MemberDecQualifier TypeName "`"

A reference expression is a reference to a declaration. The referenced declaration is determined according to §5.1.7 Un-
qualified reference resolution and §5.1.8 Qualified reference resolution. The kind of the referenced declaration must match
the kind of reference indicated by the keyword.

ValueDeclaration personNameAttribute = `value Person.name`;

FunctionDeclaration personSayMethod = `function Person.say`;

FunctionDeclaration processWriteMethod = `function process.write`;

ClassDeclaration processClass = `class process`;

6.10.2. Package and module references

A package reference expression is a package name, as defined by §4.1.2 Packages, with the keyword package, surrounded
by backticks.

PackageDec: "`" "package" FullPackageName? "`"

The package name must refer to a package from which an import statement in the same compilation unit may import de-
clarations, as defined by §4.2 Imports.

If there is no explicit package name, the package reference is to the package in which the package reference expression oc-
curs.

Expressions

Project Ceylon: 1.2 125

Package currentPackage = `package`;
Package modelPackage = `package ceylon.language.meta.model`;

A module reference expression is a module name, as defined by §9.3.1 Module names and version identifiers, with the
keyword module, surrounded by backticks.

ModuleDec: "`" "module" FullPackageName? "`"

The module name must refer to the module to which the compilation unit belongs, as specified by §9.2 Source layout, or to
a module imported by the module to which the compilation unit belongs, as defined by §9.3.10 Module descriptors.

If there is no explicit module name, the module reference is to the package in which the module reference expression oc-
curs.

Module currentModule = `module`;
Module languageModule = `module ceylon.language`;

6.10.3. Type of a reference expression

The type of a reference expression depends upon the kind of program element referenced:

• for a module, the type is Module,

• for a package, the type is Package,

• for a reference, the type is ReferenceDeclaration,

• for any other value, the type is ValueDeclaration,

• for a function, the type is FunctionDeclaration,

• for a callable constructor, the type is CallableConstructorDeclaration,

• for a value constructor, the type is ValueConstructorDeclaration,

• for a type parameter, the type is TypeParameter,

• for a type alias declared using the keyword alias, the type is AliasDeclaration,

• for a class with an initializer parameter list, or for any class alias, the type is ClassWithInitializerDeclaration,

• for a class with constructors, the type is ClassWithConstructorsDeclaration, and

• for an interface or interface alias, the type is InterfaceDeclaration.

For a reference to an anonymous class, the type depends upon the keyword, class, or value, specified in the reference ex-
pression:

• for a class reference expression, the type is ClassDeclaration, but

• for a value reference expression, the type is ValueDeclaration.

Expressions

Project Ceylon: 1.2 126

Chapter 7. Annotations

Annotations allow information to be attached to a declaration or assertion, and recovered at runtime via the use of the
Ceylon metamodel. Annotations are used to specify:

• information used by the compiler while typechecking the program,

• API documentation for the documentation compiler,

• serialization of a class, and

• information needed by generic frameworks and libraries.

7.1. Annotations of program elements

Annotations occur at the very beginning of a declaration or assertion, in an annotation list.

"The user login action"
by ("Gavin King",

"Andrew Haley")
throws (`class DatabaseException`,

"if database access fails")
see (`function LogoutAction.logout`)
scope (session)
action { description="Log In"; url="/login"; }
shared deprecated

7.1.1. Annotation lists

An annotation is an initial lowercase identifier, optionally followed by an argument list.

Annotation: MemberName Arguments?

The annotation name is a reference to an annotation constructor, resolved according to §5.1.7 Unqualified reference resol-
ution.

A list of annotations does not require punctuation between the individual annotations in the list. An annotation list may be-
gin with a string literal, in which case it is interpreted as the argument of a doc annotation.

Annotations: StringLiteral? Annotation*

Every annotation is an invocation expression, as defined by §6.6 Invocation expressions, of an annotation constructor. The
annotation name is interpreted as a base expression, as defined in §6.5.1 Base expressions.

7.1.2. Annotation arguments

For an annotation with no arguments, the argument list may be omitted, in which case the annotation is interpreted as hav-
ing an empty positional argument list. Otherwise, the annotation argument list may be specified using one of two forms:

• Using a positional argument list, as defined in §6.6.7 Positional argument lists:

doc ("the name") String name;

• Using a named argument list, as defined in §6.6.8 Named argument lists:

doc { description="the name"; } String name;

As a special case, the name of the doc annotation and the parenthesis around its argument may be ommitted if it is the first
annotation in an annotation list.

"the name" String name;

Project Ceylon: 1.2 127

Operator expressions, member expressions, self references, anonymous functions, comprehensions, and string templates
are not permitted in an annotation argument. Every base expression in an annotation argument must be a value reference to
an anonyous class instance of an enumerated type, or must occur in a direct instantiation expression for an annotation type.

A named argument to an annotation may not be an inline function, value, or anonymous class.

7.2. Annotation definition

Annotations are typesafe.

• An annotation constructor defines the schema of an annotation as it appears at a program element.

• An annotation type defines constraints upon which program elements can bear the annotation, and an API for access-
ing the information carried by an annotation.

7.2.1. Annotation constructors

An annotation constructor is a toplevel function that defines an annotation schema. An annotation constructor must be an-
notated annotation. An annotation constructor may not declare type parameters.

Each parameter of an annotation constructor must have one of the following types:

• Integer, Float, Character, or String,

• an enumerated type whose cases are all anonymous classes, such as Boolean,

• a subtype of Declaration in ceylon.language.meta.declaration,

• an annotation type,

• T? where T is a legal annotation constructor parameter type,

• {T*}, {T+}, [T*], or [T+] where T is a legal annotation constructor parameter type, or

• any tuple type whose element types are legal annotation constructor parameter types.

A parameter of an annotation constructor may be variadic.

An annotation constructor must simply instantiate and return an instance of an annotation type. The body of an annotation
constructor may not contain multiple statements. Operator expressions, member expressions, self references, anonymous
functions, comprehensions, and string templates are not permitted in the definition of an annotation constructor. Every
base expression in the body of an annotation constructor must be a reference to a parameter of the annotation constructor
or to an anonyous class instance of an enumerated type, or must occur in a direct instantiation expression for an annotation
type.

A named argument appearing in the definition of an annotation constructor may not be an inline function, value, or an-
onymous class.

shared annotation Scope scope(ScopeType s) => Scope(s);

shared annotation Todo todo(String text) => Todo(text);

An annotation constructor parameter may have a default argument, which must be a legal annotation argument.

The return type of an annotation constructor must be a constrained annotation type, as defined below in §7.2.3 Constrained
annotation types.

A user-defined annotation constructor may not return the same annotation type as one of the modifiers listed below in
§7.4.1 Declaration modifiers.

Note: in future releases of the language we will let an annotation constructor return a sequence or tuple of annotation type
instances.

Annotations

Project Ceylon: 1.2 128

7.2.2. Annotation types

Annotation constructors produce instances of annotation types. An annotation type is a class annotated annotation. An
annotation type may not be a generic type with type parameters. An annotation type must have an empty initializer section.

Note: currently every annotation type must be a final class which directly extends Basic in ceylon.language.

Each initializer parameter of an annotation type must have one of the following types:

• Integer, Float, Character, or String,

• an enumerated type whose cases are all anonymous classes, such as Boolean,

• a subtype of Declaration in ceylon.language.meta.declaration,

• an annotation type,

• T? where T is a legal annotation parameter type,

• {T*}, {T+}, [T*], or [T+] where T is a legal annotation parameter type, or

• any tuple type whose element types are legal annotation parameter types.

An initializer parameter of an annotation type may be variadic.

An initializer parameter of an annotation type may have a default argument, which must be a legal annotation argument.

7.2.3. Constrained annotation types

A constrained annotation type is an annotation type that is a subtype of OptionalAnnotation or SequencedAnnotation

defined in the package ceylon.language.

• If A is a subtype of OptionalAnnotation, at most one annotation of annotation type A may occur at a given program
element.

• If A is a subtype of SequencedAnnotation, multiple annotations of annotation type A may occur at a given program ele-
ment.

• If A is a subtype of ConstrainedAnnotation<A,B,P,T>, then an annotation of annotation type A may not occur at a pro-
gram element whose reference expression type, as defined in §6.10.3 Type of a reference expression, is not assignable
to P.

• If A is a subtype of ConstrainedAnnotation<A,B,P,T> where T is not exactly Anything, then an annotation of annota-
tion type A may not occur at a program element whose metamodel type, as defined in §6.9.1 Type of a metamodel ex-
pression, is not assignable to T.

shared final annotation class Scope(shared ScopeType scope)
satisfies OptionalAnnotation<Scope,ClassOrInterfaceDeclaration> {

string => (scope==request then "request")
else (scope==session then "session")
else (scope==application then "application")
else nothing;

}

shared final annotation class Todo(String text)
satisfies SequencedAnnotation<Todo> {

string => text;
}

Note: it is perfectly acceptable for multiple annotation constructors to return the same annotation type.

7.3. Annotation values

An annotation value is the value returned when an annotation constructor is invoked. We may obtain the annotation values

Annotations

Project Ceylon: 1.2 129

of all annotations of a given annotation type that occur at a given program element by passing the annotation type
metamodel, as defined in §6.9 Metamodel expressions, and program element reference, as defined in §6.10 Reference ex-
pressions, to the method annotations() defined in the package ceylon.language.meta.model.

Scope scope = annotations(`Scope`, `class Person`) else Scope(request);

Todo[] todos = annotations(`Todo`, `function method`);

7.4. Language annotations

Certain important annotations are predefined in the module ceylon.language.

7.4.1. Declaration modifiers

The following annotations, called modifiers, are compiler instructions that affect the compilation process:

• shared specifies that a declaration is visible outside of the package or body in which it occurs, or that a package is vis-
ible outside the module it belongs to.

• abstract specifies that a class cannot be instantiated, or that a constructor is a partial constructor.

• formal specifies that a member does not specify an implementation and must therefore be refined by every concrete
subclass.

• default specifies that a method, attribute, or member class may be refined by subtypes.

• actual indicates that a method, attribute, or member type refines a method, attribute, or member type defined by a su-
pertype.

• variable specifies that a value may be assigned multiple times.

• late disables definite initialization checking for a reference, allowing the reference to be initialized after the initializer
of the class to which it belongs has already completed.

• native specifies that a program element implementation is specific to a certain platform, and should be ignored by the
compiler backend when compiling for any other platform, or that it is actually implemented in a different language,
and that the program element should be completely ignored by the Ceylon compiler backend, or that a module or mod-
ule import statement, as defined in §9.3.10 Module descriptors, is specific to a certain platform.

• deprecated indicates that a value, function or type is deprecated. It accepts an optional String argument. The com-
piler produces a warning when compiling code that depends upon a deprecated program element.

• final specifies that a class may not be extended, and may not declare default members.

• sealed specifies that a class may not be extended or instantiated outside the module in which it is defined, that an in-
terface may not be satisfied by a class or interface outside the module in which it is defined, or that a constructor may
not be invoked outside the module in which it is defined.

• annotation specifies that a class is an annotation type, or that a toplevel function is an annotation constructor.

• suppressWarnings hides compilation warnings occurring at the annotated program element.

Note: annotation constraints ensure that these annotations do not occur at program elements to which they do not apply.

The following annotation is a hint to the compiler that lets the compiler optimize compiled bytecode for non-64 bit archi-
tectures:

• small specifies that a value of type Integer, Integer or Float contains 32-bit values.

By default, Integer and Float are assumed to represent 64-bit values, as specified in §8.5.2 Numeric operations.

Note that small is not yet supported in Ceylon 1.1.

Annotations

Project Ceylon: 1.2 130

7.4.2. Documentation

The following annotations are instructions to the documentation compiler:

• doc specifies the description of a program element, in Markdown format text.

• by specifies the authors of a program element.

• license specifies the URL of the license under which a module or package is distributed.

• see specifies a related member or type.

• throws specifies a thrown exception type.

• tagged specifies classifying named tags.

The String arguments to the deprecated, doc, throws and by annotations are parsed by the documentation compiler as
Markdown-format content.

These annotations are all defined in the package ceylon.language.

7.5. Serialization

TODO: Define how serialization works.

Annotations

Project Ceylon: 1.2 131

Chapter 8. Execution

A Ceylon program executes in a virtual machine environment, either:

• a Java Virtual Machine (JVM), or

• a JavaScript virtual machine.

In future, other virtual machine architectures may be supported.

Despite the obvious differences between the respective languages that these virtual machines were designed for, they share
very much in common in terms of runtime semantics, including common notions such as object identity, primitive value
types, exceptions, garbage collection, dynamic dispatch, and pass by reference.

Ceylon abstracts away many of the differences between these platforms, and reuses what is common between them. Inevit-
ably there are some differences that can't reasonably be hidden from the Ceylon program, and the programmer must take
these differences into consideration.

In Ceylon, every value is a reference to an instance of a class, except within a dynamic block, where a value with no type
may be a reference to an object which is not an instance of a class.

Note: the semantics of objects without classes is platform-dependent and outside the scope of this specification.

8.1. Object instances, identity, and reference passing

An object is a unique identifier, together with a reference to a class, its type arguments, and a persistent value for each ref-
erence declared by the class (including inherited references). The object is said to be an instance of the class.

A value is a reference to an object (a copy of its unique identifier). At a particular point in the execution of the program,
every reference of every object that exists, and every initialized reference of every function, getter, setter, or initializer that
is currently executing has a value. Furthermore, every time an expression is executed, it produces a value.

Two values are said to be identical if they are references to the same object—if they hold the same unique identifier. The
program may determine if two values of type Identifiable are identical using the === operator defined in §6.8.2 Operator
definition. It may not directly obtain the unique identifier (which is a purely abstract construct). The program has no way
of determining the identity of a value which is not of type Identifiable.

Given a value, the program may determine if the referenced object is assignable to a certain type using the is operator.
The object is assignable to the given type if the applied type formed by its class and type arguments is a subtype of the giv-
en type according to the type system defined in Chapter 3, Type system. (Therefore, the Ceylon runtime must be capable of
reasoning about subtyping.)

Invocation of a function or instantiation of a class results in execution of the function body or class initializer with para-
meter values that are copies of the value produced by executing the argument expressions of the invocation, and a refer-
ence to the receiving instance that is a copy of the value produced by executing the receiver expression. The value pro-
duced by the invocation expression is a copy of the value produced by execution of the return directive expression.

Person myself(Person me) { return me; }
Person p = ...;
assert (myself(p)===p); //assertion never fails

Semaphore s = Semaphore();
this.semaphore = s;
assert (semaphore===s); //assertion never fails

A new object is produced by execution of a class instantiation expression. The Ceylon compiler guarantees that if execu-
tion of a class initializer terminates with no uncaught exception, then every reference of the object has been initialized with
a well-defined persistent value. The value of a reference is initialized for the first time by execution of a specifier or as-
signment expression. Every class instantiation expression results in an object with a new unique identifier shared by no
other existing object. The object exists from the point at which execution of its initializer terminates. Conceptually, the ob-
ject exists until execution of the program terminates.

In practice, the object exists at least until the point at which it is not reachable by recursively following references from

Project Ceylon: 1.2 132

any function, getter, setter, or initializer currently being executed, or from an expression in a statement currently being ex-
ecuted. At this point, its persistent values are no longer accessible to expressions which subsequently execute and the ob-
ject may be destroyed by the virtual machine. There is no way for the program to determine that an object has been des-
troyed by the virtual machine (Ceylon does not support finalizers).

8.1.1. Value type optimizations

As a special exception to the rules defined above, the compiler is permitted to emit bytecode or compiled JavaScript that
produces a new instance of certain types in the module ceylon.language without execution of the initializer of the class,
whenever any expression is evaluated. These types are: Integer, Float, Character, Range, Entry, String, Array, and
Tuple. Furthermore, it is permitted to use such a newly-produced instance as the value of the expression, as long as the
newly-produced instance is equal to the value expected according to the rules above, as determined using the == operator.

Therefore, the types listed above directly extend Object instead of Basic, and are not Identifiable.

Note: this does no justice at all to our compiler. Actually the compiler infrastructure already supports value type optimiza-
tion for user-defined types, though we have not yet exposed this functionality as part of the language.

8.1.2. Type argument reification

Type arguments, as defined in §3.6 Generic type arguments, are reified in Ceylon. An instance of a generic type holds a
reference to each of its type arguments. Therefore, the following are possible in Ceylon:

• testing the runtime value of a type argument of an instance, for example, objectList is List<Person> or case (is

List<Person>),

• filtering exceptions based on type arguments, for example, catch (NotFoundException<Person> pnfe), and

• testing the runtime value of an instance against a type parameter, for example x is Key, or against a type with a type
parameter as an argument, for example, objectList is List<Element>.

• obtaining a Type object representing a type with type arguments, for example, `List<Person>`,

• obtaining a Type object representing the runtime value of a type parameter, for example, `Element`, or of a type with a
type parameter as an argument, for example, `List<Element>`, and

• obtaining a Type object representing the runtime value of a type argument of an instance using reflection, for example,
type(objectList).typeArguments.first.

At runtime, all types are concrete types formed by:

• recursively replacing all type aliases, class aliases, and interface aliases with their definitions, which is always possible
according to §3.2.10 Type alias elimination, and

• recursively replacing all type parameters with their type arguments

in any type that appears in an expression or condition.

Therefore, every type parameter refers, at runtime, to a concrete type that involves no type aliases or type parameters. In
particular, the type arguments held by an instance of a generic class are concrete types.

This program prints String[].

class Generic<out T>(T t) { string=>`T`.string; }
Generic<{S*}> gen<S>(S* ss) => Generic(ss);
void run() {

print(gen("hello", "world"));
}

The runtime is generally permitted, as an optimization, to return a more precise type in place of a less precise type when a
type parameter is evaluated. This program may print String instead of Object, even though Object is the type argument
inferred at compile time.

class Generic<out T>(T t) { string=>`T`.string; }

Execution

Project Ceylon: 1.2 133

Generic<Object> gen(Object o) => Generic(o);
void run() {

print(gen("hello"));
}

8.2. Sequential execution and closure

Ceylon programs are organized into bodies, as defined in §5.1 Block structure and references, containing statements which
are executed sequentially and have access to declarations which occur in the surrounding lexical context and to persistent
values held by references, as defined in §4.8.1 References, declared in the surrounding lexical context.

Note: for the purposes of this section, an interface body is, strictly speaking, a trivial case of a body which contains no
statements or persistent values, but we're primarily concerned with blocks and class bodies.

The statements and non-lazy specifiers that directly occur in a body are executed sequentially in the lexical order in which
they occcur. Execution of a body begins at the first statement or non-lazy specifier. Execution of a block terminates when
the last statement or non-lazy specifier of the body finishes executing, or when a control directive that terminates the block
is executed, or when an exception is thrown by an evaluation, assignment, invocation, or instantiation.

8.2.1. Frames

When execution of a body begins, a frame is created. For each reference whose declaration directly occurs in the body, the
frame has a value, which may or may not be initialized. The value may be initialized or assigned during execution of the
body.

We can visualize a frame as a list of reference declarations with optional values. For example, a frame with an initialized
reference named language and an uninitialized reference named count would be written like this:

{ String language = "ceylon"; Integer count; }

While a body is executing, all values held in the frame are considered accessible. An evaluation, assignment, invocation,
or instantiation may result in a pause in execution of the body while the called getter, setter, function, or class is executed
or instantiated. However, the frame associated with the calling body is retained and values held in the frame are still con-
sidered accessible. When execution of the body resumes, the frame is restored.

When execution of a body terminates, the frame may or may not become inaccessible. In the case of a class body, if the
initializer terminates with no thrown exception, the frame and its values become a new instance of the class, are associated
with the newly created unique identifier, and remain accessible while this object is itself accessible. In the case of any oth-
er kind of body, or in the case that an initializer throws an exception, the frame and its values may remain accessible if:

• a reference to a function or class declared within the body is accessible,

• an instance of a class declared within the body is accessible, or

• an instance of a comprehension declared within the body is accessible.

Otherwise, the frame becomes inaccessible and may be destroyed.

The principle of closure states that a nested body always has access to a frame for every containing body. The set of cur-
rent instances of containing classes and current frames of containing blocks forms the closure of a nested declaration.

8.2.2. Current instances and current frames

A frame may be the current frame for a body. When the body is executing, the created frame is the current frame. When
execution of the body terminates, the created frame is no longer the current frame. Invocation or evaluation of a member of
a class or interface, invocation of a callable reference or anonymous function, or evaluation of the values produced by a
comprehension may result in the frame being restored as the current frame.

A class instance, callable reference, anonymous function reference, or comprehension instance packages a reference to a
frame for each body containing the program element, as specified below. When a member of the class instance is invoked
or evaluated, when the callable reference or anonymous function is invoked, or when the comprehension instance produces
a value, these frames are restored as the current frames of the associated bodies. When the invocation or evaluation termin-

Execution

Project Ceylon: 1.2 134

ates, or when the comprehension value has been produced, these frames are no longer current frames.

The value associated with a value reference in the current frame of the body to which the value reference belongs is called
the current value of the value reference.

If a frame is the current frame for a class or interface body, we call it the current instance of the class or interface.

TODO: in the following two sections, account for callable references, anonymous function references, and comprehension
instances.

8.2.3. Current instance of a class or interface

If a statement is occurs directly or indirectly inside a class or interface body, then there is always a current instance of the
class or interface when the statement is executed. The current instance is determined as follows:

• For a statement that occurs sequentially, as defined by §5.1 Block structure and references, in the body of the class or
of a constructor of the class, the current instance is the new instance being initialized.

• For a statement that occurs sequentially in the body of a member of the class or interface, the current instance is the re-
ceiving instance of the base or member expression that resulted in a reference to the member.

• For a statement that occurs sequentially in the body of a nested class or interface that occurs in the body of the class or
interface, the current instance is the same object that was the current instance when the initializer of the current in-
stance of the nested class or interface was executed.

• Otherwise, for any other statement that occurs sequentially in the body of a declaration that occurs in the body of the
class or interface, the current instance is the same object that was the current instance when the base member expres-
sion that resulted in a reference to the declaration was executed.

Here, innerObject is the current instance of Inner when member() is executed, and outerObject is the current instance of
Outer:

Outer outerObject = Outer();
Inner innerObject = outerObject.Inner();
innerObject.member();

8.2.4. Current frame of a block

If a statement occurs directly or indirectly inside a block, then there is always a current frame of the block when the state-
ment is executed. The current frame is determined as follows:

• If the statement occurs sequentially, as defined by §5.1 Block structure and references, in the block, the current frame
is the frame associated with the current execution of the block.

• For a statement that occurs sequentially in the body of a nested class or interface that occurs in the block, the current
frame is the same frame that was the current frame when the initializer of the current instance of the nested class or in-
terface was executed.

• Otherwise, for any other statement that occurs sequentially inside the body of a declaration that occurs in the block,
and the current frame is the frame that was the current frame when the base member expression that resulted in a refer-
ence to the declaration was executed.

In each of the following code fragments, result refers to the value "hello":

String()() outerMethod(String s) {
String() middleMethod() {

String innerMethod() => s;
return innerMethod;

}
return middleMethod;

}

String middleMethod()() => outerMethod("hello");
String innerMethod() => middleMethod();
String result = innerMethod();

Execution

Project Ceylon: 1.2 135

Object outerMethod(String s) {
object middleObject {

shared actual String string => s;
}
return middleObject;

}

Object middleObject = outerMethod("hello");
String result = middleObject.string;

8.2.5. Initialization

When an instance is instantiated, its initializer is executed, and the initializer for every class it inherits is executed. If a
class has constructors, one of its constructors is also executed. For a class C:

• First, the initializer of Object defined in ceylon.language is executed. (This initializer is empty and does no work.)

• For each superclass X of C, there is exactly one other superclass Y of C that directly extends X. When execution of the
initializer of X terminates without a thrown exception, execution of the initializer of Y begins. When sequential execu-
tion of the initializer reaches the declaration of the invoked or delegated constructor of Y, if any, the constructor itself is
executed. When execution of the constructor terminates without a thrown exception, execution of the initializer re-
sumes at the next statement after the constructor declaration.

• Finally, when execution of the initializer of C, terminates without a thrown exception, the new instance of C is fully-
initialized and made accessible to the calling code.

If any initializer or constructor in the class hierarchy terminates with a thrown exception, initialization terminates and the
incompletely-initialized instance never becomes accessible.

Each initializer produces a frame containing initialized values for each reference declared by the corresponding class.
These frames are aggregated together to form the new instance of the class C.

Note: since interfaces don't have initializers, the issue of "linearization" of supertypes simply never arises in Ceylon. There
is a natural, well-defined initialization ordering.

8.2.6. Class instance optimization

As an exception to the above, the compiler is permitted to destroy a persistent value associated with a class instance when
the class initializer terminates, potentially rendering inaccessible the instance identified by the value, if it can determine
that the persistent value will never be subsequently accessed by the program.

This optimization is the only source of a distinction between a "field" of a class and a "local variable" of its initializer.
There is no way for a program to observe this distinction.

8.2.7. Execution of expression and specification statements

When an expression statement is executed, the expression is evaluated.

When a non-lazy specification statement is executed, the specified expression is evaluated, and the resulting value as-
signed to the specified reference within the current frame or current instance associated with the body to which the spe-
cified reference belongs.

When a lazy specification statement is executed, the specified expression is associated with the specified reference within
the current frame or current instance associated with the body to which the specified reference belongs. Subsequent evalu-
ation or invocation of the reference for this current frame or current instance may result in evaluation of the specified ex-
pression, in which case the expression is evaluated within this current frame or current instance.

8.2.8. Execution of control directives

Execution of a control directive, as specified in §5.3.2 Control directives, terminates execution of the body in which it oc-
curs, and possibly of other containing bodies.

• A return directive that occurs sequentially in the body of a function, getter, setter, or class initializer terminates execu-

Execution

Project Ceylon: 1.2 136

tion of the body of the function, getter, setter, or class initializer and of all intervening bodies. Optionally, it determines
the return value of the function or getter.

• A break directive terminates execution of the body of the most nested containing loop in which it occurs sequentially,
and of all intervening bodies. Additionally, it terminates execution of the loop.

• A continue directive terminates execution of the body of the most nested containing loop in which it occurs sequen-
tially, and of all intervening bodies. It does not terminate execution of the loop.

• A throw directive that occurs sequentially in the body of a function, getter, setter, or class initializer terminates execu-
tion of the body of the function, getter, setter, or class initializer and of all intervening bodies, and, furthermore, the ex-
ception propagates to the caller, as defined below, unless there is an intervening try with a catch clause matching the
thrown exception, in which case it terminates execution of the body of the try statement and all intervening bodies,
and execution continues from the body of the catch clause.

8.2.9. Exception propagation

If execution of an evaluation, assignment, invocation, or instantiation terminates with an exception thrown, the exception
propagates to the calling code, and terminates execution of the body of the function, getter, setter, or class initializer in
which the expression involving the evaluation, assignment, invocation, or instantiation sequentially occurs, and of all inter-
vening bodies, and, furthermore, the exception propagates to the caller unless there is an intervening try with a catch

clause matching the thrown exception, in which case it terminates execution of the body of the try statement and all inter-
vening bodies, and execution continues from the body of the catch clause.

8.2.10. Initialization of toplevel references

A toplevel reference has no associated frame. Instead, the lifecycle of its persistent value is associated with the loading and
unloading of a module by the module runtime. The first time a toplevel reference is accessed following the loading of its
containing module, its initializer expression is evaluated, and the resulting value is associated with the reference. This as-
sociation survives until the toplevel reference is reassigned, or until the module is unloaded by the module runtime.

Initialization of a toplevel reference may result in recursive initialization of other toplevel references. Therefore, it is pos-
sible that a cycle could occur where evaluation of a toplevel reference occurs while evaluating its initializer expression.
When this occurs, an InitializationError is thrown.

8.2.11. Initialization of late references

A reference annotated late may be uninitialized in a given frame. The rules of the language do not guarantee that an un-
initialized late reference is never evaluated at runtime. If a late reference which is uninitialized in the current frame or
current instance is evaluated, an InitializationError is thrown.

Likewise, if a non-variable late reference which is already initialized in the current frame or current instance is assigned,
an InitializationError is thrown.

8.3. Execution of control structures and assertions

Control structures, as specified in §5.5 Control structures and assertions, are used to organize conditional and repetitive
code within a body. Assertions are essentially a sophisticated sort of control directive, but for convenience are categorized
together with control structures.

8.3.1. Evaluation of condition lists

Execution of an if, while, or assert requires evaluation of a condition list, as defined in §5.4 Conditions.

To determine if a condition list is satisfied, its constituent conditions are evaluated in the lexical order in which they occur
in the condition list. If any condition is not satisfied, none of the subsequent conditions in the list are evaluated.

• A boolean condition is satisfied if its expression evaluates to true when the condition is evaluated.

For any other kind of condition, the condition is satisfied if its value reference or expression evaluates to an instance of the

Execution

Project Ceylon: 1.2 137

required type when the condition is evaluated:

• for an assignability condition, the condition is satisfied if the expression evaluates to an instance of the specified type
when the control structure is executed,

• for an existence condition, the condition is satisfied unless the expression evaluates to null when the control structure
is executed, or

• for a nonemptiness expression, the condition is satisfied unless the expression evaluates to an instance of []|Null

when the control structure is executed.

A condition list is satisfied if and only if all of its constituent conditions are satisfied.

8.3.2. Validation of assertions

When an assertion, as specified in §5.5.6 Assertions, is executed, its condition list is evaluated. If the condition list is not
satisfied, an exception of type AssertionError in ceylon.language is thrown.

The information carried by the AssertionError includes:

• the text of the Ceylon code of the condition that failed,

• the message specified by the doc annotation of the assertion, if any.

8.3.3. Execution of conditionals

The if/else and switch/case/else constructs control conditional execution.

When the if/else construct, specified in §5.5.1 if/else, is executed, its condition list is evaluated. If the condition list is
satisfied, the if block is executed. Otherwise, the else block, if any, is executed, or, if the construct has an else if, the
child if construct is executed.

When a switch/case/else construct, specified in §5.5.2 switch/case/else, is executed, its switch expression is evaluated
to produce a value. The value is guaranteed to match at most one case of the switch. If it matches a certain case, then that
case block is executed. Otherwise, switch is guaranteed to have an else, and so the else block is executed.

The value produced by the switch expression matches a case if either:

• the case is a list of literal values and value references the value is identical to one of the value references in the list or
equal to one of the literal values in the list, or if

• the case is an assignability condition of form case (is V) and the value is an instance of V.

8.3.4. Execution of loops

The for/else and while loops control repeated execution.

When a while construct, specified in §5.5.4 while, is executed, the loop condition list is evaluated repeatedly until the first
time the condition list is not satisfied, or until a break, return, or throw directive that terminates the loop is executed.
Each time the condition is satisfied, the while block is executed.

When a for/else construct, specified in §5.5.3 for/else, is executed:

• the iterated expression is evaluated to produce an an instance of Iterable,

• an Iterator is obtained by calling iterator() on the iterable object, and then

• the for block is executed once for each value of produced by repeatedly invoking the next() method of the iterator,
until the iterator produces the value finished, or until a break, return, or throw directive that terminates the loop is
executed.

Execution

Project Ceylon: 1.2 138

Note that:

• if the iterated expression is also of type X[], the compiler is permitted to optimize away the use of Iterator, instead
using indexed element access.

• if the iterated expression is a range constructor expression, the compiler is permitted to optimize away creation of the
Range, and generate the indices using the successor operation.

We say that the loop exits early if it ends via execution of a break, return, or throw directive. Otherwise, we say that the
loop completes normally.

If the loop completes normally, the else block is executed. Otherwise, if the loop exits early, the else block is not ex-
ecuted.

8.3.5. Exception handling

When a try/catch/finally construct, specified in §5.5.5 try/catch/finally, is executed:

• the resource expressions, if any, are evaluated in the order they occur, and then obtain() is called on each resulting re-
source instance of type Obtainable, in the same order, then

• the try block is executed, then

• destroy() is called on each resource instance of type Destroyable, and release() is called on each resource instance
of type Obtainable, if any, in the reverse order that the resource expressions occur, passing the exception that propag-
ated out of the try block, if any, then

• if an exception did propagate out of the try block, the first catch block with a variable to which the exception is as-
signable, if any, is executed, and then

• the finally block, if any, is executed, even in the case where an exception propagates out of the whole construct.

TODO: Specify what happens if close() throws an exception. (Same semantics as Java with "suppressed" exceptions.)

8.3.6. Dynamic type checking

Inside a dynamic block, a situation might occur that requires dynamic type checking, as specified in §5.3.5 Dynamic
blocks. It is possible that:

• the value to which an expression with no type evaluates at execution time might not be an instance of the type required
where the expression occurs,

• in particular, the value to which a switch expression with no type evaluates at execution time might be an instance of a
type not covered by the cases of a switch with no else, or

• a qualified or unqualified reference which does not refer to a statically typed declaration might not resolve to any de-
claration at all.

Whenever such a condition is encountered at runtime, an AssertionError is immediately thrown.

Note: in Ceylon 1.0, dynamic type checking is only supported on JavaScript virtual machines.

8.4. Evaluation, invocation, and assignment

Evaluation of an expression may result in:

• invocation of a function or instantiation of a class,

• evaluation of a value,

• instantiation of an instance of Callable that packages a callable reference, or

Execution

Project Ceylon: 1.2 139

• assignment to a variable value.

8.4.1. Dynamic dispatch

Dynamic dispatch is the process of determing at runtime a member declaration based upon the runtime type of an object,
which, as a result of subtype polymorphism, may be different to its static type known at compile time.

Any concrete class is guaranteed to have exactly one declaration of a member, either declared or inherited by the class,
which refines all other declarations of the member declared or inherited by the class. At runtime, this member is selected.

There is one exception to this rule: member expressions where the receiver expression is of form super or (super of

Type), as defined in §6.3.3 super, are dispatched based on the static type of the receiver expression:

• Any invocation of a member of super is processed by the member defined or inherited by the supertype, bypassing any
member declaration that refines this member declaration.

• Any invocation of a member of an expression of form (super of Type) is processed by the member defined or inher-
ited by Type, bypassing any member declaration that refines this member declaration.

8.4.2. Evaluation

Evaluation of a value reference, as defined in §6.5.4 Value references, produces its current value. Evaluation of a callable
reference, as defined in §6.5.5 Callable references, that does not occur as the primary of a direct invocation results in a
new instance of Callable that packages the callable reference.

person.name

'/'.equals

When a value reference expression is executed:

• first, the receiver expression, if any, is evaluated to obtain a receiving instance for the evaluation, then

• the actual declaration to be invoked is determined by considering the runtime type of the receiving instance, if any, and
then

• if the declaration is a reference, its persistent value is retrieved from the receiving instance, or

• otherwise, execution of the calling body pauses while the body of its getter is executed by the receiving instance, then,

• finally, when execution of the getter ends, execution of the calling body resumes.

The resulting value is the persistent value retrieved, or the return value of the getter, as specified by the return directive.

When a callable reference expression that does not occur as the primary of a direct invocation expression is executed:

• first, the receiver expression, if any, is evaluated to obtain a receiving instance for the evaluation, then

• the receiving instance, a reference to the declaration to be invoked, or a reference to the current frame or instance of
every body that contains the referenced declaration are packaged together into an instance of Callable.

The resulting value is the instance of Callable. The concrete class of this instance is not specified here.

8.4.3. Assignment

Given a value reference, as defined in §6.5.4 Value references, to a variable, the assignment operator = assigns it a new
value.

person.name = "Gavin"

When an assignment expression is executed:

Execution

Project Ceylon: 1.2 140

• first, the receiver expression of the value reference expression is executed to obtain the receiving instance, then

• the actual declaration to be assigned is determined by considering the runtime type of the receiving instance, and then

• if the member is a reference, its persistent value is updated in the receiving instance, or

• otherwise, execution of the calling body pauses while the body of its setter is executed by the receiving instance with
the assigned value, then,

• finally, when execution of the setter ends, execution of the calling body resumes.

8.4.4. Invocation

Evaluation of an invocation expression, as defined in §6.6 Invocation expressions, results in invocation of a function or
callable constructor, or instantiation of a class. Every invocation has a callable expression:

• in a direct invocation, the callable expression is a callable reference, and

• in an indirect invocation, the callable expression is an instance of Callable that packages an underlying callable refer-
ence.

In either case, the callable expression determines the instance and member to be invoked.

print("Hello world!")

Entry(person.name, person)

When an invocation expression is executed:

• first, the callable expression is evaluated to obtain the receiving instance, then

• each listed argument or spread argument is evaluated in turn in the calling body, and

• if the argument list has a comprehension, a comprehension instance, as defined in §8.6 Evaluation of comprehensions,
is obtained, and then

• the actual declaration to be invoked is determined by considering the runtime type of the receiving instance, if any, and
then

• execution of the calling body pauses while the body of the function or initializer is executed by the receiving instance
with the argument values, then

• finally, when execution of the function or initializer ends, execution of the calling body resumes.

A function invocation evaluates to the return value of the function, as specified by the return directive. The argument val-
ues are passed to the parameters of the method, and the body of the method is executed.

A class instantiation evaluates to a new instance of the class. The argument values are passed to the initializer parameters
of the class, and the initializer is executed.

8.4.5. Evaluation of anonymous functions

When an anonymous function expression, as defined in §6.4 Anonymous functions, is evaluated, a reference to the func-
tion and a reference to the current frame or instance of every containing body are packaged into an instance of Callable.
The instance of Callable is the resulting value of the expression. The concrete class of this instance is not specified here.

8.4.6. Evaluation of enumerations

Evaluation of an enumeration expression, as defined in §6.6.12 Iterable and tuple enumeration, results in creation of an it-
erable stream or tuple.

{ "hello", "world" }

Execution

Project Ceylon: 1.2 141

[new, *elements]

When an iterable enumeration expression is executed, a reference to the enumeration expression, together with a reference
to the current frame or instance of every containing body, together with a comprehension instance, as defined in §8.6 Eval-
uation of comprehensions, in the case that the enumeration expression has a comprehension, are packaged together into a
stream. Evaluation of an expression occurring in the enumeration expression occurs in the context of the packaged framed
associated with the stream. When the stream is iterated, it produces, in turn:

• one value for each listed argument, by evaluating the listed argument expression, and then

• if the argument list has a spread argument, each value produced by the spread argument, or

• if the argument list has a comprehension, each value produced by the comprehension instance, or

• if there are no arguments, and no comprehension, the stream is empty and produces no values.

When a tuple enumeration expression is executed:

• first, each listed argument or spread argument is evaluated in turn in the calling body, and

• if the argument list has a comprehension, a comprehension instance, as defined in §8.6 Evaluation of comprehensions,
is obtained, and then

• the resulting argument values are packaged into an instance of Iterable or Sequence, and this object is the resulting
value of the enumeration expression, unless

• there are no arguments, and no comprehension, in which case the resulting value of the enumeration expression is the
object empty.

In the case of an iterable enumeration, the concrete class of the resulting value is not specified here. In the case of a tuple
enumeration it is always Tuple, Empty, or Sequence.

8.4.7. Evaluation of spread arguments and comprehensions

A spread argument, as defined in §6.6.5 Spread arguments, produces multiple values by iterating the iterable object to
which the spread operator is applied.

When a spread argument expression type is a subtype of Sequential, the behavior does not depend upon where the spread
argument occurs:

• If it occurs as an argument, the sequence produced by evaluating the expression is passed directly to the parameter.

• If it occurs in an enumeration expression, the sequence produced by evaluating the expression is appended directly to
the resulting iterable object or tuple.

On the other hand, when a spread argument expression type is not a subtype of Sequential, the behavior depends upon
where the spread argument occurs:

• If it occurs as an argument to a variadic parameter in a positional argument list, the values produced by a spread argu-
ment are evaluated immediately and packaged into an instance of Sequence and passed to the variadic parameter, un-
less there are no values, in which case the object empty is passed to the variadic parameter.

• If it occurs as an argument to a parameter of type Iterable at the end of a named argument list, the iterable object pro-
duced by evaluating the expression is passed directly to the parameter.

• If it occurs in a tuple enumeration, the values produced by a spread argument are evaluated immediately and packaged
into an instance of Sequence and appended to the resulting tuple.

• If it occurs in an iterable enumeration, the iterable object produced by evaluating the expression is chained directly to
the resulting iterable object.

Likewise, a comprehension, as defined in §6.6.6 Comprehensions, produces multiple values, as specified by §8.6 Evalu-

Execution

Project Ceylon: 1.2 142

ation of comprehensions. The behavior depends upon where the comprehension occurs:

• If it occurs as an argument to a variadic parameter in a positional argument list, the values produced by the comprehen-
sion instance are evaluated immediately, packaged into an instance of Sequence, and passed to the variadic parameter,
unless there are no values, in which case the object empty is passed to the variadic parameter.

• If it occurs as an argument to a parameter of type Iterable at the end of a named argument list, the comprehension in-
stance is packaged into an iterable object that produces the values of the comprehension on demand, and this iterable
object is passed directly to the parameter. The concrete class of this object is not specified here.

• If it occurs in a tuple enumeration, the values produced by the comprehension instance are evaluated immediately,
packaged into an instance of Sequence, and appended to the resulting tuple.

• If it occurs in an iterable enumeration, the comprehension instance is packaged into an iterable object that produces the
values of the comprehension on demand, and this iterable object is chained directly to the resulting iterable object. The
concrete class of this object is not specified here.

8.5. Operator expressions

Most operator expression are defined in terms of function invocation, value evaluation, or a combination of invocations
and evaluations, as specified in §6.8 Operators. The semantics of evaluation of an operator expression therefore follows
from the above definitions of evaluation and invocation and from its definition in terms of evaluation and invocation.

However, this specification allows the compiler to take advantage of the optimized support for primitive value types
provided by the virtual machine environment.

8.5.1. Operator expression optimization

As a special exception to the rules, the compiler is permitted to optimize certain operations upon certain types in the mod-
ule ceylon.language. These types are: Integer, Float, Character, Range, Entry, String, Array, and Tuple.

Thus, the tables in the previous chapter define semantics only. The compiler may emit bytecode or compiled JavaScript
that produces the same value at runtime as the pseudo-code that defines the operator, without actually executing any invoc-
ation, for the following operators:

• all arithmetic operators,

• the comparison and equality operators ==, !=, <=>, <, >, <=, >= when the argument expression types are built-in numeric
types, and

• the Range and Entry construction operators .., :, and ->.

In all operator expressions, the arguments of the operator must be evaluated from left to right when the expression is ex-
ecuted. In certain cases, depending upon the definition of the operator, evaluation of the leftmost argument expression res-
ults in a value that causes the final value of the operator expression to be produced immediately without evaluation of the
remaining argument expressions. Optimizations performed by the Ceylon compiler must not alter these behaviours.

Note: this restriction exists to ensure that any effects are not changed by the optimizations.

8.5.2. Numeric operations

The arithmetic operations defined in §6.8.10 Arithmetic operators for values of type Integer and Float are defined in
terms of methods of the interface Numeric. However, these methods themselves make use of the native operations of the
underlying virtual machine. Likewise, values of type Integer and Float are actually represented in terms of a format nat-
ive to the virtual machine.

It follows that the precise behavior of numeric operations depends upon the virtual machine upon which the program ex-
ecutes. However, certain behaviours are common to supported virtual machines:

• Values of type Float are represented according to the IEEE 754 specification, IEEE Standard for Binary Floating-
Point Arithmetic, and floating point numeric operations conform to this specification. Where possible, a double-pre-
cision 64-bit representation is used. It is possible on both Java and JavaScript virtual machines.

Execution

Project Ceylon: 1.2 143

• Where possible, values of type Integer are represented in two's complement form using a fixed bit length. Where pos-
sible, a 64-bit representation is used. Overflow and underflow wrap silently. This is the case for the Java Virtual Ma-
chine.

• Otherwise, values of type Integer are represented according to the IEEE 754 specification. This is the case for JavaS-
cript virtual machines.

Platform-dependent behavior of numeric operations is defined in the Java Language Specification, and the ECMAScript
Language Specification.

It might be argued that having platform-dependent behavior for numeric operations opens up the same portability con-
cerns that affected languages like C in the past. However, the cross-platform virtual machines supported by Ceylon
already provide a layer of indirection that substantially eases portability concerns. Of course, numeric code is not guaran-
teed to be completely portable between the Java and JavaScript virtual machines, but it's difficult to imagine how such a
level of portability could reasonably be achieved.

8.6. Evaluation of comprehensions

When a comprehension, as specified in §6.6.6 Comprehensions, is evaluated, a reference to the comprehension, together
with a reference to the current frame or instance of every containing body, are packaged together into a comprehension in-
stance. A comprehension instance is not considered a value in the sense of §8.1 Object instances, identity, and reference
passing. Instead, it is a stream of values, each produced by evaluating the expression clause of the comprehension.

A comprehension consists of a series of clauses. Each clause of a comprehension, except for the expression clause that ter-
minates the list of clauses, produces a stream of frames. A frame is a set of values for iteration variables and condition
variables declared by the clause and its parent clauses.

Note: each child clause can be viewed as a body nested inside the parent clause. The lifecycle of comprehension frames
reflects this model.

Evaluation of an expression occurring in a comprehension clause occurs in the context of the packaged frames associated
with the comprehension instance together with a comprehension frame associated with the clause.

8.6.1. for clause

The expression which produces the source stream for a child for clause may refer to an iteration variable of a parent for
clause. In this case the child clause is considered correlated. Otherwise it is considered uncorrelated.

In either case, the child clause produces a stream of frames. For each frame produced by the parent clause, and for each
value produced by the source stream of the child clause, the child clause produces a frame consisting of the parent clause
frame extended by the iteration variable value defined by the child clause.

This comprehension has a correlated for clause. For each character c in each string w in words, the child for clause pro-
duces the frame { String word=w; Character char=c; }.

for (word in words) for (char in word) char

This comprehension has an uncorrelated for clause. For each string n in nouns, and each string a in adjectives, the child
for clause produces the frame { String noun=n; String adj=a; }.

for (noun in nouns) for (adj in adjectives) adj + " " + noun

8.6.2. if clause

A child if clause filters its parent clause frames. For every frame produced by the parent clause which satisfies the condi-
tion list of the child clause, the child clause produces that frame, extended by any condition variable defined by the child
clause.

This comprehension has an if clause. For each object o in objects that is a nonempty String, the if clause produces the
frame { Object obj=o; String str=o; }.

for (obj in objects) if (is String str=obj, !str.empty) str

Execution

Project Ceylon: 1.2 144

8.6.3. Expression clause

As specified in §6.6.6 Comprehensions, every comprehension ends in an expression clause. An expression clause produces
a single value for each frame produced by its parent clause, by evaluating the expression in the frame. These resulting val-
ues are the values returned by the whole comprehension.

8.7. Concurrency

Neither this specification nor the module ceylon.language provide any facility to initiate or control concurrent execution
of a program written in Ceylon. However, a Ceylon program executing on the Java Virtual Machine may interact with Java
libraries (and other Ceyon modules) that make use of concurrency.

In this scenario, the execution of a Ceylon program is governed by the rules laid out by the Java programming language's
execution model (Chapter 17 of the Java Language Specification). Ceylon references belonging to a class or interface are
considered fields in the sense of the JLS. Any such refence not explicitly declared variable is considered a final field.
Evaluation of a reference is considered a use operation, and assignment to or specification of a variable reference is con-
sidered an assign operation, again in terms of the JLS.

Execution

Project Ceylon: 1.2 145

Chapter 9. Module system

The Ceylon module architecture enables a toolset which relieves developers of many mundane tasks. The module system
specifies:

• the format of packaged deployable module archives (for the Java platform), module scripts (for the JavaScript plat-
form), and source archives,

• the layout of a module repository

• the format of the package descriptor files which contain information about the packages contained in a module, includ-
ing whether a package is visible to other modules, and

• the format of the module descriptor file which contains information about a module, along with a list of its versioned
dependencies.

Thus, developers are never exposed to individual .class files, and are not required to manually manage module archives
using the operating system file manager. Instead, the toolset helps automate the management of modules within module re-
positories.

Circular dependencies between modules are not supported. The Ceylon compiler detects such dependencies and produces
an error.

9.1. The module runtime and module isolation

At any time, there may be multiple versions of a certain module available in the virtual machine. Modules execute under
the control of the module runtime. The module runtime:

• obtains modules from module repositories,

• reads module metadata and recursively loads dependencies, and

• isolates modules that belong to different assemblies.

Execution of a module begins with a specified toplevel method or class, or with an entry point specified in the module
descriptor, and imported modules are loaded lazily as classes they contain are needed. The name and version id of the im-
ported module containing the needed class are determined from the imported package name specified by the compilation
unit and the imported module version specified by the module descriptor.

The mechanism behind this is platform-dependent.

9.1.1. Module isolation for the Java platform

In the JVM environment, each version of each module is loaded using a different class loader. Classes inside a module
have access to other classes in the same module and to classes belonging to modules that are explicitly imported in the
module descriptor. Classes in other modules are not accessible.

Ceylon supports a simplified class loader architecture:

• The bootstrap class loader owns classes required to bootstrap the module runtime. It is the direct parent of all module
class loaders, and its classes are visible to all module class loaders.

• A module class loader owns classes belonging to a given version of a certain module. Its classes are visible only to
classes belonging to the module class loader of a module which declares an explicit dependency on the given version
of the first module.

The Ceylon module runtime for the JVM is implemented using JBoss Modules. It is included in the Ceylon SDK.

9.1.2. Module isolation for the JavaScript platform

In the JavaScript environment, modules are loaded using the require() function defined by CommonJS Modules.

Project Ceylon: 1.2 146

There are various implementations of the CommonJS-style require() function, and Ceylon module scripts should work
with any of them.

9.1.3. Assemblies

A future release of the language will add support for assemblies, that is, the ability to:

• package together several interdependent versioned modules into a single archive for deployment as a single well-
defined application or service,

• specify the name and version of the application or service, and

• override the versions of imported modules declared in modules.ceylon, as defined in §9.3.10 Module descriptors, with
assembly-specific module versions.

An assembly archive will probably just be an archived module repository with an assembly descriptor.

9.2. Source layout

A source directory contains Ceylon source code in files with the extension .ceylon and Java source code in files with the
extension .java. The module and package to which a compilation unit belongs is determined by the subdirectory in which
the source file is found.

The name of the package to which a compilation unit belongs is formed by replacing every path directory separator char-
acter with a period in the relative path from the root source directory to the subdirectory containing the source file. In the
case of a Java source file, the subdirectory must agree with the package specified by the Java package declaration.

The name of the module to which a compilation unit belongs is determined by searching all containing directories for a
module descriptor. The name of the module is formed by replacing every path directory separator character with a period
in the relative path from the source directory to the subdirectory containing the module descriptor. If no module descriptor
is found, the code belongs to the default module.

Note: the default module is intended only as a convenience for experimental code.

A package or compilation unit may belong to only one module. No more than one module descriptor may occur in the con-
taining directories of a compilation unit.

Thus, the structure of the source directory containing the module org.hello might be the following:

source/
org/

hello/
module.ceylon //the module descriptor
main/

hello.ceylon
default/

DefaultHello.ceylon
personalized/

PersonalizedHello.ceylon

The source code for multiple modules may be contained in a single source directory.

9.3. Module architecture

Compiled code is automatically packaged into module archives and module scripts by the Ceylon compiler. A module re-
pository is a repository containing module archives, module scripts, and other miscellaneous artifacts. A module archive or
module script is automatically obtained from a module repository when code belonging to the module is needed by the
compiler or module runtime.

Modules that form part of the Ceylon SDK are found in the module repository in the modules directory of the Ceylon dis-
tribution.

Red Hat maintains a central module repository at https://modules.ceylon-lang.org. Read access to this site is free of

Module system

Project Ceylon: 1.2 147

registration and free of charge. Ceylon projects may apply for a user account which provides write access to the central
module repository.

A module belonging to the central module repository must satisfy the following regulations:

• the first element of the module name must be a top-level internet domain name, and the second element of the module
name must be a second-level domain of the given top-level domain owned by the organization distributing the module,
and.

• the module must be made available under a royalty-free license.

For example, a module developed by Red Hat might be named org.jboss.server.

TODO: should we require that module archives be signed using the Java jarsigner tool?

9.3.1. Module names and version identifiers

A module name is a period-separated list of initial lowercase identifiers, for example:

ceylon.language

org.hibernate

It is recommended that module names follow the Java package naming convention embedding the organization's domain
name (in this case, hibernate.org). The namespace ceylon is reserved for Ceylon SDK modules. The namespace java is
reserved for modules belonging to the Java SDK. The namespace default is reserved for the default module.

It is highly recommended, but not required, that every user-written module have at least three identifiers in its name.
Therefore, org.hibernate.orm is strongly preferred to org.hibernate.

Modules may not be "nested". That is, the list of identifiers forming the name of a module may not be a prefix of the list of
identifiers forming the name of another module.

A package belongs to a module if the list of identifiers forming the name of the module is a prefix of the list of identifiers
forming the name of the package. For example, the packages:

ceylon.language

ceylon.language.assertion

ceylon.language.meta

ceylon.language.meta.declaration

belong to the module ceylon.language. The packages:

org.hibernate

org.hibernate.impl

org.hibernate.cache

belong to the module org.hibernate.

TODO: This might not work out all that well in practice, unless we introduce some additional convention for "extras"
modules, for example, modules containing examples. It could be org.hibernate vs org.hibernate_example or
org.hibernate.core vs org.hibernate.example.

The name of the default module is default. The default module has no version and cannot be published to a remote repos-
itory nor to the local repository cache under ~/.ceylon/repo.

A module version identifier is a character string containing no whitespace, for example:

Module system

Project Ceylon: 1.2 148

1.0.1

3.0.0.beta

TODO: at some stage we will probably need to add a format for specifying version ranges.

9.3.2. Module archive names for the Java platform

A module archive name is constructed from the module name and version identifier. A module archive name is of the fol-
lowing standard form:

<module>-<version>.car

where <module> is the full name of the module, and <version> is the module version identifier. For example:

ceylon.language-1.0.1.car

org.hibernate-3.0.0.beta.car

The default module has no version, its module archive name is default.car

9.3.3. Module script names for the JavaScript platform

A module script name is likewise constructed from the module name and version identifier. A module script name is of the
following standard form:

<module>-<version>.js

where <module> is the full name of the module, and <version> is the module version identifier. For example:

ceylon.language-1.0.1.js

org.hibernate-3.0.0.beta.js

The default module has no version, its module archive name is default.js

9.3.4. Source archive names

A source archive name is of the following standard form:

<module>-<version>.src

For example:

ceylon.language-1.0.1.src

org.hibernate-3.0.0.beta.src

The default module has no version, its source archive name is default.src

9.3.5. Module archives

A Ceylon module archive is a Java jar archive which:

• contains a Ceylon module descriptor in the module directory,

• contains the compiled .class files for all compilation units belonging to the module, and

• has a filename which adheres to the standard for module archive names.

Module system

Project Ceylon: 1.2 149

The module directory of the module archive is formed by replacing each period in the fully qualified package name with
the directory separator character. For example, the module directory for the module ceylon.language is:

/ceylon/language

The module directory for the module org.hibernate is:

/org/hibernate

The package directory for a package belonging to the module archive is formed by replacing each period in the fully quali-
fied package name with the directory separator character. For example, the package directory for the package
org.hibernate.impl is:

/org/hibernate/impl

Inside a module archive, a .class file is found in the package directory of the package to which it belongs.

Thus, the structure of the module archive for the module org.hello might be the following:

org.hello-1.0.0.car
META-INF/

MANIFEST.MF
org/

hello/
module.class //the module descriptor
main/

package.class //a package descriptor
hello.class

default/
DefaultHello.class

personalized/
PersonalizedHello.class

A module archive may not contain multiple modules.

9.3.6. Module scripts

A Ceylon module script is a JavaScript source file which:

• complies with the CommonJS Modules specification, and

• has a filename which adheres to the standard for module script names.

9.3.7. Source archives

A source archive is a zip archive which:

• contains the source code (.ceylon and .java files) for all compilation units belonging to the module, and

• has a filename which adheres to the standard for source archive names.

Inside a source archive, a Ceylon or Java source file is located in the package directory of the package to which the com-
pilation unit belongs. The package directory for a package belonging to the source archive is formed by replacing each
period in the fully qualified package name with the directory separator character.

Thus, the structure of the source archive for the module org.hello might be the following:

org.hello-1.0.0.src
org/

hello/
module.ceylon //the module descriptor
main/

package.ceylon //a package descriptor
hello.ceylon

default/
DefaultHello.ceylon

personalized/
PersonalizedHello.ceylon

Module system

Project Ceylon: 1.2 150

A source archive may not contain the source of multiple modules.

9.3.8. Module repositories

A module repository is a directory structure on the local filesystem or a remote HTTP server.

• A local module repository is identified by a filesystem path.

• A remote module repository is identified by a URL with protocol http: or https:.

A publishable module repository is a local module repository, or a WebDAV-enabled remote module repository.

For example:

modules

/usr/bin/ceylon/modules

http://jboss.org/ceylon/modules

https://gavin:secret@modules.ceylon-lang.org

A module repository contains module archives, module scripts, source archives, and documentation. The address of an ar-
tifact belonging to the repository adheres to the following standard form:

<repository>/<module-path>/<version>/<artifact>

where <repository> is the filesystem path or URL of the repository, <artifact> is the name of the artifact, <version> is
the module version, and <module-path> is formed by replacing every period with a slash in the module name.

The default module having no version, its access path does not contain the version.

<repository>/default/<archive>

For example, the module archive ceylon.language-1.0.1.car, module script, ceylon.language-1.0.1.js, and source
archive ceylon.language-1.0.1.src, belonging to the repository included in the Ceylon SDK are obtained from the fol-
lowing addresses:

modules/ceylon/language/1.0.1/ceylon.language-1.0.1.car

modules/ceylon/language/1.0.1/ceylon.language-1.0.1.js

modules/ceylon/language/1.0.1/ceylon.language-1.0.1.src

The module archive org.hibernate-3.0.0.beta.car and source archive org.hibernate-3.0.0.beta.src belonging to
the repository http://jboss.org/ceylon/modules are obtained from the following addresses:

http://jboss.org/ceylon/modules/org/hibernate/3.0.0.beta/org.hibernate-3.0.0.beta.car

http://jboss.org/ceylon/modules/org/hibernate/3.0.0.beta/org.hibernate-3.0.0.beta.src

The legacy Java jar archive org.h2-1.2.141.jar belonging to the repository /usr/bin/ceylon/modules is obtained
from the following address:

/usr/bin/ceylon/modules/org/h2/1.2.141/org.h2-1.2.141.jar

For each archive, the module repository may contain a SHA-1 checksum file. The checksum file is a plain text file con-
taining just the SHA-1 checksum of the archive. The address of a checksum file adheres to the following standard form:

<repository>/<module-path>/<version>/<archive>.sha1

Module system

Project Ceylon: 1.2 151

The compiler or module runtime verifies the checksum after downloading the archive from the module repository.

A module repository may contain documentation generated by the Ceylon documentation compiler in exploded form. A
module's documentation resides in the module documentation directory, a directory with address adhering to the following
standard form:

<repository>/<module-path>/<version>/module-doc/

For example, the home page for the documentation of the module org.hibernate is:

http://jboss.org/ceylon/modules/org/hibernate/module-doc/index.html

9.3.9. Package descriptors

A package descriptor is defined in a source file named package.ceylon in the package it describes.

PackageDescriptor: Annotations "package" FullPackageName ";"

A package may be annotated shared. A shared package is visible outside the containing module, that is, in any module
which imports the containing module.

The package descriptor is optional for unshared packages.

"The typesafe query API."
license ("http://www.gnu.org/licenses/lgpl.html")
shared package org.hibernate.query;

9.3.10. Module descriptors

A module descriptor is defined in a source file named module.ceylon in the root package of the module it describes (the
package with the same name as the module).

ModuleDescriptor: Annotations "module" FullPackageName StringLiteral ModuleBody

The literal string after the module name specifies the version of the module.

A module may import other modules.

ModuleBody: "{" ModuleImport* "}"

ModuleImport: Annotations "import" (FullPackageName|StringLiteral) StringLiteral ";"

The name of the imported module may be specified using the usual syntax for a module name, or as a literal string, to al-
low interoperation with legacy module repositories existing outside the Ceylon ecosystem.

Note: this enables interoperation with Maven.

Note: in Ceylon 1.0 it is illegal to explicitly import the module ceylon.language. The language module is always impli-
citly imported.

The string literal after the imported module name specifies the version of the imported module.

An imported module may be annotated optional and/or shared.

• If module x has a shared import of module y, then any module that imports x implicitly imports y.

• If module x has an optional import of module y, then x may be executed even if y is not available at runtime.

If a declaration belonging to module x is visible outside the module and involves types imported from a different module
y, then the module import of y in the module descriptor for x must be shared.

"The best-ever ORM solution!"
license ("http://www.gnu.org/licenses/lgpl.html")

Module system

Project Ceylon: 1.2 152

module org.hibernate "3.0.0.beta" {
shared import ceylon.language "1.0.1";
import javax.sql "4.0";

}

"The test suite for Hibernate"
license ("http://www.gnu.org/licenses/lgpl.html")
module org.hibernate.test "3.0.0.beta" {

import org.hibernate "3.0.0.beta";
TestSuite().run();

}

TODO: do we allow procedural code in the body of a module?

Module system

Project Ceylon: 1.2 153

	The Ceylon Language
	Table of Contents
	Welcome to Ceylon
	Chapter 1. Introduction
	1.1. Language overview
	1.1.1. Runtime and platform

	1.2. Type system
	1.2.1. Mixin inheritance
	1.2.2. Sum types, self types, and type families
	1.2.3. Simplified generics
	1.2.4. Union and intersection types
	1.2.5. Type aliases and type inference
	1.2.6. Metaprogramming

	1.3. Object-oriented programming
	1.3.1. Class initialization and instantiation
	1.3.2. Functions, methods, values, and attributes
	1.3.3. Defaulted parameters and variadic parameters
	1.3.4. First-class functions and higher-order programming
	1.3.5. Naming conventions, annotations, and inline documentation
	1.3.6. Named arguments and tree-like structures
	1.3.7. Modularity

	1.4. Language module
	1.4.1. Operators and operator polymorphism
	1.4.2. Numeric and character types
	1.4.3. Compile-time safety for null values and flow-sensitive typing
	1.4.4. Streams and comprehensions
	1.4.5. Sequences and tuples

	Chapter 2. Lexical structure
	2.1. Whitespace
	2.2. Comments
	2.3. Identifiers and keywords
	2.4. Literals
	2.4.1. Numeric literals
	2.4.2. Character literals
	2.4.3. String literals

	2.5. Operators and delimiters

	Chapter 3. Type system
	3.1. Identifier naming
	3.2. Types
	3.2.1. Member distinctness
	3.2.2. Subtyping
	3.2.3. Union types
	3.2.4. Intersection types
	3.2.5. The bottom type
	3.2.6. Principal typing
	3.2.7. Type expressions
	3.2.8. Type abbreviations
	3.2.9. Type inference
	3.2.10. Type alias elimination

	3.3. Inheritance
	3.3.1. Inheritance and subtyping
	3.3.2. Extension
	3.3.3. Satisfaction

	3.4. Case enumeration and coverage
	3.4.1. Coverage
	3.4.2. Cases
	3.4.3. Generic enumerated types
	3.4.4. Disjoint types

	3.5. Generic type parameters
	3.5.1. Type parameters and variance
	3.5.2. Variance validation
	3.5.3. Generic type constraints

	3.6. Generic type arguments
	3.6.1. Type arguments and variance
	3.6.2. Type argument substitution
	3.6.3. Type arguments and type constraints
	3.6.4. Applied types and and variance
	3.6.5. Type argument inference

	3.7. Principal instantiations and polymorphism
	3.7.1. Inherited instantiations
	3.7.2. Type argument distinctness
	3.7.3. Principal instantiation inheritance
	3.7.4. Principal instantiation of a supertype
	3.7.5. Refinement
	3.7.6. Qualified types
	3.7.7. Realizations

	Chapter 4. Declarations
	4.1. Compilation unit structure
	4.1.1. Toplevel and nested declarations
	4.1.2. Packages

	4.2. Imports
	4.2.1. Type imports
	4.2.2. Anonymous class imports
	4.2.3. Function and value imports
	4.2.4. Alias imports
	4.2.5. Wildcard imports
	4.2.6. Imported name

	4.3. Parameters
	4.3.1. Parameter lists
	4.3.2. Required parameters
	4.3.3. Defaulted parameters
	4.3.4. Value parameters
	4.3.5. Callable parameters
	4.3.6. Variadic parameters

	4.4. Interfaces
	4.4.1. Interface bodies
	4.4.2. Interface inheritance
	4.4.3. Sealed interfaces
	4.4.4. Enumerated interfaces
	4.4.5. Interface aliases
	4.4.6. Dynamic interfaces

	4.5. Classes
	4.5.1. Callable type of a class
	4.5.2. Initializer section
	4.5.3. Declaration section
	4.5.4. Class inheritance
	4.5.5. Abstract, final, sealed, formal, and default classes
	4.5.6. Member class refinement
	4.5.7. Anonymous classes
	4.5.8. Enumerated classes
	4.5.9. Class aliases

	4.6. Type aliases
	4.7. Functions
	4.7.1. Callable type of a function
	4.7.2. Functions with blocks
	4.7.3. Functions with specifiers
	4.7.4. Function return type inference
	4.7.5. Forward declaration of functions
	4.7.6. Functions with multiple parameter lists
	4.7.7. Formal and default methods
	4.7.8. Method refinement

	4.8. Values
	4.8.1. References
	4.8.2. Getters
	4.8.3. Setters
	4.8.4. Value type inference
	4.8.5. Forward declaration of values
	4.8.6. Formal and default attributes
	4.8.7. Attribute refinement

	4.9. Constructors
	4.9.1. Callable type of a constructor
	4.9.2. Partial constructors
	4.9.3. Constructor delegation

	Chapter 5. Statements, blocks, and control structures
	5.1. Block structure and references
	5.1.1. Declaration name uniqueness
	5.1.2. Scope of a declaration
	5.1.3. Visibility
	5.1.4. Hidden declarations
	5.1.5. References and block structure
	5.1.6. Type inference and block structure
	5.1.7. Unqualified reference resolution
	5.1.8. Qualified reference resolution

	5.2. Patterns and variables
	5.2.1. Variables
	5.2.2. Patterns
	5.2.3. Pattern variables
	5.2.4. Tuple patterns
	5.2.5. Entry patterns

	5.3. Blocks and statements
	5.3.1. Expression statements
	5.3.2. Control directives
	5.3.3. Specification statements
	5.3.4. Destructuring statements
	5.3.5. Dynamic blocks
	5.3.6. Definite return
	5.3.7. Definite initialization
	5.3.8. Definite uninitialization

	5.4. Conditions
	5.4.1. Boolean conditions
	5.4.2. Assignability conditions
	5.4.3. Existence and nonemptiness conditions
	5.4.4. Case conditions

	5.5. Control structures and assertions
	5.5.1. if/else
	5.5.2. switch/case/else
	5.5.3. for/else
	5.5.4. while
	5.5.5. try/catch/finally
	5.5.6. Assertions

	Chapter 6. Expressions
	6.1. Literal values
	6.1.1. Integer number literals
	6.1.2. Floating point number literals
	6.1.3. Character literals
	6.1.4. Character string literals

	6.2. String templates
	6.3. Self references
	6.3.1. this
	6.3.2. outer
	6.3.3. super

	6.4. Anonymous functions
	6.4.1. Anonymous function parameter type inference

	6.5. Compound expressions
	6.5.1. Base expressions
	6.5.2. Member expressions
	6.5.3. Constructor expressions
	6.5.4. Value references
	6.5.5. Callable references
	6.5.6. Static expressions
	6.5.7. Static value references
	6.5.8. Static callable references

	6.6. Invocation expressions
	6.6.1. Direct invocations
	6.6.2. Default arguments
	6.6.3. The type of a list of arguments
	6.6.4. Listed arguments
	6.6.5. Spread arguments
	6.6.6. Comprehensions
	6.6.7. Positional argument lists
	6.6.8. Named argument lists
	6.6.9. Anonymous arguments
	6.6.10. Specified arguments
	6.6.11. Inline declaration arguments
	6.6.12. Iterable and tuple enumeration
	6.6.13. Dynamic enumerations

	6.7. Conditional expressions, let expressions, and anonymous class expressions
	6.7.1. if/then/else expressions
	6.7.2. switch/case/else expressions
	6.7.3. Let expressions
	6.7.4. Inline anonymous class expressions

	6.8. Operators
	6.8.1. Operator precedence
	6.8.2. Operator definition
	6.8.3. Basic invocation and assignment operators
	6.8.4. Equality and comparison operators
	6.8.5. Logical operators
	6.8.6. Operators for handling null values
	6.8.7. Correspondence, subrange, and stream operators
	6.8.8. Operators for creating objects
	6.8.9. Conditional operators
	6.8.10. Arithmetic operators
	6.8.11. Set operators

	6.9. Metamodel expressions
	6.9.1. Type of a metamodel expression

	6.10. Reference expressions
	6.10.1. Declaration references
	6.10.2. Package and module references
	6.10.3. Type of a reference expression

	Chapter 7. Annotations
	7.1. Annotations of program elements
	7.1.1. Annotation lists
	7.1.2. Annotation arguments

	7.2. Annotation definition
	7.2.1. Annotation constructors
	7.2.2. Annotation types
	7.2.3. Constrained annotation types

	7.3. Annotation values
	7.4. Language annotations
	7.4.1. Declaration modifiers
	7.4.2. Documentation

	7.5. Serialization

	Chapter 8. Execution
	8.1. Object instances, identity, and reference passing
	8.1.1. Value type optimizations
	8.1.2. Type argument reification

	8.2. Sequential execution and closure
	8.2.1. Frames
	8.2.2. Current instances and current frames
	8.2.3. Current instance of a class or interface
	8.2.4. Current frame of a block
	8.2.5. Initialization
	8.2.6. Class instance optimization
	8.2.7. Execution of expression and specification statements
	8.2.8. Execution of control directives
	8.2.9. Exception propagation
	8.2.10. Initialization of toplevel references
	8.2.11. Initialization of late references

	8.3. Execution of control structures and assertions
	8.3.1. Evaluation of condition lists
	8.3.2. Validation of assertions
	8.3.3. Execution of conditionals
	8.3.4. Execution of loops
	8.3.5. Exception handling
	8.3.6. Dynamic type checking

	8.4. Evaluation, invocation, and assignment
	8.4.1. Dynamic dispatch
	8.4.2. Evaluation
	8.4.3. Assignment
	8.4.4. Invocation
	8.4.5. Evaluation of anonymous functions
	8.4.6. Evaluation of enumerations
	8.4.7. Evaluation of spread arguments and comprehensions

	8.5. Operator expressions
	8.5.1. Operator expression optimization
	8.5.2. Numeric operations

	8.6. Evaluation of comprehensions
	8.6.1. for clause
	8.6.2. if clause
	8.6.3. Expression clause

	8.7. Concurrency

	Chapter 9. Module system
	9.1. The module runtime and module isolation
	9.1.1. Module isolation for the Java platform
	9.1.2. Module isolation for the JavaScript platform
	9.1.3. Assemblies

	9.2. Source layout
	9.3. Module architecture
	9.3.1. Module names and version identifiers
	9.3.2. Module archive names for the Java platform
	9.3.3. Module script names for the JavaScript platform
	9.3.4. Source archive names
	9.3.5. Module archives
	9.3.6. Module scripts
	9.3.7. Source archives
	9.3.8. Module repositories
	9.3.9. Package descriptors
	9.3.10. Module descriptors

