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Welcome to Ceylon

This project is the work of ateam of people who are fans of Java and of the Java ecosystem, of its practical orientation, of
its culture of openness, of its developer community, of its roots in the world of business computing, and of its ongoing
commitment to portability. However, we recognize that the language and class libraries, designed more than 15 years ago,
are no longer the best foundation for a range of today's business computing problems. We further recognize that Java
failed in one environment it was originally promoted for: the web browser.

The goal of this project is to make a clean break with the legacy Java SE platform, by improving upon the Java language
and class libraries, and by providing a modular architecture for a new platform based upon the Java Virtua Machine. A
further goal isto bridge the gap between the web client and server by supporting execution on JavaScript virtual machines.

Of course, we recognize that the ability to interoperate with existing Java code, thereby leveraging existing investment in
the Java ecosystem, is a critical requirement of any successor to the Java platform.

Javais a simple language to learn and Java code is easy to read and understand. Java provides a level of typesafety that is
appropriate for business computing and enables sophisticated tooling with features like refactoring support, code comple-
tion, and code navigation. Ceylon aims to retain the overall model of Java, while getting rid of some of Java's warts, and
improving upon Java's facilities for creating abstractions and writing generic libraries and frameworks.

Ceylon has the following goals:

* to beappropriate for large scale development, but to also be fun,

e to execute on the VM, and on JavaScript virtual machines, and to interoperate with Java and JavaScript code,
e to provide language-level modularity,

* tobeeasy to learn for Java and C# developers,

e to eliminate some of Javas verbosity, while retaining its readability—Ceylon does not aim to be the most concise/
cryptic language around,

e to provide an elegant and more flexible syntax to support frameworks, declarative programming, and meta
programming, and, in particular

* to provide a declarative syntax for expressing hierarchical information like user interface definition, externalized data,
and system configuration, thereby eliminating Java's dependence upon XML,

< to support and encourage a more functional style of programming with immutable objects and first class functions,
alongside the familiar imperative mode,

« to expand compile-time typesafety with compile-time safe handling of null values, compile-time safe typecasts, and a
more typesafe approach to reflection, and

e tomakeit easy to get things done.
Unlike other alternative JVM languages, Ceylon aimsto completely replace the legacy Java SE class libraries.

Therefore, the Ceylon SDK provides:

« acompiler that compiles Ceylon and Java source to Java bytecode, and cross-compiles Ceylon to JavaScript,

e command-line tooling for compiling modules and documentation, and managing modules in module repositories,
« Eclipse-based tooling for developing, compiling, testing, and debugging programs written in Ceylon,

* amodule runtime for modular programs that execute on the Java Virtua Machine, and

e aset of classlibraries that provides much of the functionality of the Java SE platform, together with the core function-
ality of the Java EE platform.
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Chapter 1. Introduction

This document defines the syntax and semantics of the Ceylon language. The intended audience includes compiler imple-
mentors, interested parties who wish to contribute to the evolution of the language, and experienced developers seeking a
precise definition of language constructs. However, in light of the newness of the language, we will begin with an over-
view of the main features of the language and SDK. A brief introduction to programming in the language may be found at
the following address:

http://ceyl on-1ang. or g/ docunent ati on/ t our/

1.1. Language overview

Ceylon is a general-purpose programming language featuring a syntax similar to Java and C#. It is imperative, statically-
typed, block-structured, object-oriented, and higher-order. By statically-typed, we mean that the compiler performs extens-
ive type checking, with the help of type annotations that appear in the code. By object-oriented, we mean that the language
supports user-defined types and features a nominative type system where atype is a set of named attributes and operations,
and that it supports inheritance and subtype polymorphism. By higher-order, we mean that every referenceable program
element (every attribute, every operation, and every type) is aso avalue. By block-structured, we mean to say that the lan-
guage features lexical scoping and an extremely regular recursive syntax for declarations and statements.

Ceylon improves upon the Java language and type system to reduce verbosity and increase typesafety compared to Java
and C#. Ceylon encourages a more functional, somewhat less imperative style of programming, resulting in code which is
easier to reason about, and easier to refactor.

1.1.1. Runtime and platform

Ceylon programs execute in any standard Java Virtual Machine or on any JavaScript virtual machine, and take advantage
of the memory management and concurrency features of the virtual machine in which they execute. Ceylon programs are
packaged into modules with well-defined inter-module dependencies, and always execute inside a runtime environment
with module isolation.

The Ceylon compiler is able to compile Ceylon code that calls Java classes or interfaces, and Java code that calls Ceylon
classes or interfaces. JavaScript code is able to interact with Ceylon classes and functions compiled to JavaScript. Via a
special dynamic mode, code written in Ceylon may call functions defined natively in JavaScript.

Moreover, Ceylon provides its own native SDK as a replacement for the Java platform class libraries. Certain SDK mod-
ules depend upon services available only on the Java platform. Other SDK modules, including the core language module,
are cross-platform and may also be used in a JavaScript virtual machine.

1.2. Type system

Ceylon, like Java and C#, features a hybrid type system with both subtype polymorphism and parameteric polymorphism.
A typeis either a stateless interface, a stateful class, atype parameter, or aunion or intersection of other types. A class, in-
terface, or type parameter may be defined as a subtype of another type. A class or interface may declare type parameters,
which abstract the definition of the class or interface over all types which may be substituted for the type parameters.

Like C#, and unlike Java, Ceylon's type system is fully reified. In particular, generic type arguments are reified, eliminat-
ing many problems that result from type erasure in Java.

There are no primitive types or arrays in Ceylon—every Ceylon type can be represented within the language itself. So all
values are instances of the type hierarchy root Anyt hi ng, which is a class. However, the Ceylon compiler is permitted to
optimize certain code to take advantage of the optimized performance of primitive types on the Java or JavaScript VM.

Furthermore, all types inferred or even computed internally by the Ceylon compiler are expressible within the language it-
self. Within the type system, non-denoteable types simply do not arise. The type system is based upon computation of
principal types. Thereis no way to construct an expression which does not have a unique principal type expressible within
the language. The principal type of an expression is a subtype of all other types to which the expression could be soundly
assigned.
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1.2.1. Mixin inheritance

Ceylon supports a restricted form of multiple inheritance, often called mixin inheritance. A class must extend exactly one
other class. But a class or interface may satisfy (extend or implement) an arbitrary number of interfaces.

Classes hold state and define logic to initialize that state when the class is instantiated. A concrete classis a class that con-
tains only concrete member definitions. Concrete classes may be directly instantiated. An abstract class may contain form-
a member declarations. Abstract classes may not be instantiated.

Interfaces may define concrete members, but may not hold state (references to other objects) or initialization logic. Thisre-
striction helps eliminate the problems traditionally associated with multiple inheritance. Ceylon never performs any kind
of "linearization" of the supertypes of atype. Interfaces may not be directly instantiated.

1.2.2. Algebraic types, self types, and type families

Ceylon does not feature Javarstyle enumerated types as a first-class construct. Instead, any abstract type may specify its
cases—an enumerated list of instances and/or subtypes. This facility is used to simulate both enumerated types and func-
tional-style "algebraic" (sum) types.

interface Identity of Person | Organization { ... }

A closely related feature is support for self types and type families. A self type is a type parameter of an abstract type (like
Conpar abl e) which represents the type of a concrete instantiation (like st ri ng) of the abstract type, within the definition
of the abstract type itself. In atype family, the self type of atype is declared not by the type itself, but by a containing type
which groups together a set of related types.

1.2.3. Simplified generics

Ceylon does not support Java-style wildcard type parameters, raw types, or any other kind of existential type. And the
Ceylon compiler never even uses any kind of "non-denotable" type to reason about the type system. So generics-related er-
ror messages are understandable to humans.

Instead of wildcard types, Ceylon features declaration-site variance. A type parameter may be marked as covariant or con-
travariant by the class or interface that declares the parameter.

Ceylon has a somewhat more expressive system of generic type constraints with a cleaner, more regular syntax. The syn-
tax for declaring constraints on a type parameter looks very similar to a class or interface declaration. Ceylon supports up-
per bound type constraints and also enumerated bounds.

i nterface Producer<out Value, in Rate>
gi ven Val ue satisfies bject
given Rate of Float|Decimal { ... }

1.2.4. Union and intersection types

A union type, for example St ri ng| Nunber , or intersection type, for example | denti fi abl e&Li st <St ri ng>, may be formed
from two or more types defined elsewhere.

Union types make it possible to write code that operates polymorphically over types defined in disparate branches of the
type heirarchy without the need for intermediate adaptor classes. Intersection types make it possible to operate polymorph-
ically over al subtypes of alist of types. Union and intersection types provide some of the benefits of structural ("duck")
typing, within the confines of a nominative type system, and therefore certain Ceylon idioms are reminiscent of code writ-
ten in dynamically-typed languages.

Union and intersection types play a central role in generic type argument inference and therefore underly the whole system
of principal typing. For example, the following expression has type HashMap<St r i ng, | nt eger | Fl oat >:

HashMvap { "float"->0.0, "integer"->0 }

1.2.5. Type aliases and type inference
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Type aliases and type inference help reduce the verbosity of code which uses generic types, eliminating the need to re-
peatedly specify generic type arguments.

A type aliasis similar to aC-stylet ypedef .

interface Strings => Sequence<String>
al i as Nunber => Integer| Fl oat|Wol e| Deci mal ;

Local type inference alows atype annotation to be eliminated altogether. The type of a block-local value or functionisin-
ferred from its definition if the keyword val ue or f uncti on occursin place of the type declaration.

val ue name = person. nane;
function sqgrt(Float x) => x"0.5;

The type of a control-structure variable also may be inferred.

for (ninO..max) { ... }

Ceylon features an especially elegant approach to generic type argument inference, making it possible to instantiate con-
tainer types, even inhomogeneous container types, without the need to explicitly mention any types at all.

val ue nunbers = { -1, 0, -1, -1.0, 0.0, 1.0 };

By limiting type inference to local declarations, Ceylon ensures that all types may be inferred by the compiler in a single
pass of the source code. Type inference works in the "downward" and "outward" directions. The compiler is able to de-
termine the type of an expression without considering the rest of the statement or declaration in which it appears.

1.2.6. Metaprogramming

In other statically typed languages, runtime metaprogramming, or reflection, is a messy business involving untypesafe
strings and typecasting. Even worse, in Java, generic type arguments are erased at runtime, and unavailable via reflection.
Ceylon, uniquely, features a typesafe metamodel and typed metamodel expressions. Since generic type arguments are re-
ified at runtime, the metamodel fully captures generic types at both compile time and execution time.

Ceylon's support for program element annotations is based around this metamodel. Annotations are more flexible than in
Java or C#, and have a much cleaner syntax.

Ceylon does not support macros or any other kind of compile-time metaprogramming.

1.3. Object-oriented programming

The primary unit of organization of an object-oriented program is the class. But Ceylon, unlike Java, doesn't require that
every function or value belong to a class. It's perfectly normal to program with a mix of classes and toplevel functions.
Contrary to popular belief, this does not make the program less object-oriented. A function is, after all, an object.

1.3.1. Class initialization and instantiation

Ceylon does not feature any Java-like constructor declaration and so each Ceylon class has a parameter list, and exactly
one initializer—the body of the class. This helps reduce verbosity and resultsin a more regular block structure.

class Point(Float x, Float y) { ... }

The Ceylon compiler guarantees that the value of any attribute of aclassisinitialized beforeit is used in an expression.

A class may be a member of an outer class. Such a member class may be refined (overridden) by a subclass of the outer
class. Instantiation is therefore a polymorphic operation in Ceylon, eliminating the need for a factory method in some cir-
cumstances.

Ceylon provides a streamlined syntax for defining an anonymous class which is only instantiated in exactly the place it is
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defined. Among other uses, the obj ect declaration is useful for creating singleton objects or method-local interface imple-
mentations.

obj ect origin extends Point (0.0, 0.0) {}

1.3.2. Functions, methods, values, and attributes

Functions and values are the bread and butter of programming. Ceylon functions are similar to Java methods, except that
they don't need to belong to a class. Ceylon values are polymorphic, and abstract their interna representation, similar to
C# properties.

String name => firstName + " " + | ast Nane;

The Ceylon compiler guarantees that any value isinitialized before it is used in an expression.

A function belonging to atype is called a method. A value belonging to atypeis called an attribute. There are no st ati ¢
members. Instead, toplevel functions and values are declared as direct members of a package. This, along with certain oth-
er features, gives the language a more regular block structure.

By default, an attribute or value may not be assigned a new value after itsinitial value has been specified. Mutable attrib-
utes and variable values must be explicitly declared using the vari abl e annotation.

Ceylon does not support function overloading. Each method of atype has adistinct name.

1.3.3. Defaulted parameters and variadic parameters

Instead of method and constructor overloading, Ceylon supports parameters with default values and variadic parameters.
voi d addl tem(Product product, Integer quantity=1) { ... }
String join(String* strings) { ... }

Furthermore, a generic method may be used to emulate parameter type overloading.

Nunber sunxNunber >( Nunber* nunbers) given Nunber of Integer | Float { ... }

Therefore, asingle method in Ceylon may emulate the signatures of several overloaded methods in Java.

1.3.4. First-class functions and higher-order programming

Ceylon supports first-class function types and higher-order functions, with minimal extensions to the traditional C syntax.
A function declaration may specify a callable parameter that accepts references to other functions with a certain signature.

String find(Bool ean where(String string)) { ... }

The argument of such a callable parameter may be either a reference to a named function declared elsewhere, or a new
function defined inline as part of the method invocation. A function may even return an invocable reference to another
function.

value result = { "C', "Java", "Ceylon" }.find((String s) => s.size>1);

The type of a function is expressed within the type system as an instantiation of the interface cal | abl e. The parameter
types are expressed as a tuple type. So the type of the function (String s) => s.size>1 is
Cal | abl e<Bool ean, [ St ri ng] >, which may be abbreviated to Bool ean( String) .

Methods and attributes may also be used as functions.

val ue names = peopl e. map( Person. nane) ;

val ue val ues = keys. map(keyedVal ues. get);
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1.3.5. Naming conventions, annotations, and inline documentation

The Ceylon compiler enforces the traditional Smalltalk nhaming convention: type names begin with an initial uppercase let-
ter—for example, Liberty or Redw ne—member names and local names with an initial lowercase letter or under-
score—for example, bl onde, i mmanenti ze() Of bol dl yGo() .

This restrictions allows a much cleaner syntax for program element annotations than the syntax found in either Java or C#.
Declaration "modifiers’ like shar ed, abst ract, and var i abl e aren't keywords in Ceylon, they're ordinary annotations.

"Base type for higher-order abstract stuff."
shared abstract class Abstract MetaThingy() { ... }

The documentation compiler reads inline documentation specified using the doc annotation.

1.3.6. Named arguments and tree-like structures

Ceylon's named argument lists provide an elegant means of initializing objects and collections. The goal of this facility is
to replace the use of XML for expressing hierarchical structures such as documents, user interfaces, configuration and seri-
alized data.

Hm page = Hm {
Head {
title="Hello";

}Bbdy {
P {

css = "greeting";
"Hello, World!"

}

An especially important application of this facility is Ceylon's built-in support for program element annotations.

1.3.7. Modularity

Toplevel declarations are organized into packages and modules. Ceylon features language-level access control via the
shar ed annotation which can be used to express block-local, package-private, module-private, and public visibility for a
program element. There's no equivalent to Javas pr ot ect ed.

A module corresponds to a versioned packaged archive. Its module descriptor expresses its dependencies to other mod-
ules. The tooling and execution model for the language is based around modularity and module archives.

1.4. Language module

The Ceylon language module defines a set of built-in types which form the basis for several powerful features of the lan-
guage. The following functionality is defined as syntactic "sugar" that makes it easier and more convenient to interact with
the language module.

1.4.1. Operators and operator polymorphism

Ceylon features arich set of operators, including most of the operators supported by C and Java. True operator overloading
is not supported. However, each operator is defined to act upon a certain class or interface type, allowing application of the
operator to any class which extends or satisfies that type. For example, the + operater may be applied to any class that sat-
isfies the interface Ssunmabl e. This approach is called operator polymor phism.

1.4.2. Numeric and character types

Ceylon's numeric type system is much simpler than C, C# or Java, with exactly two built-in numeric types (compared to
six in Java and eleven in C#). The built-in types are classes representing integers and floating point numbers. | nt eger and
Fl oat values are 64 bit by default, and may be optimized for 32 bit architectures via use of the snal | annotation.

The module ceyl on. mat h provides two additonal numeric types representing arbitrary precision integers and arbitrary pre-
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cision decimals.

Ceylon has charact er and st ri ng classes, and, unlike Java or C#, every character isafull 32-bit Unicode codepoint. Con-
veniently, astring isali st <Char act er >.

1.4.3. Compile-time safety for optional values and type narrowing

There is no primitive null in Ceylon. The null value is an instance of the class nul | that is not assignable to user-defined
class or interface types. An optional type is aunion type like Nul | | St ri ng, which may be abbreviated to St ri ng?. An op-
tional type is not assignable to a non-optional type except via use of the special-purposeif (exists ... ) construct.
Thus, the Ceylon compiler is able to detect illegal use of anull value at compile time. Therefore, there is no equivalent to
Java's Nul | Poi nt er Except i on in Ceylon.

Similarly, there are no C-style typecasts in Ceylon. Instead, theif (is ... ) andcase (is ... ) constructs may be
used to narrow the type of an object reference without risk of a d assCast Except i on. The combination of case (is ...
) with algebraic types amounts to akind of language-level support for the visitor pattern.

Alternatively, type assertions, written assert (is ... ) Orassert (exists ... ) may beusedto narrow the type of a
reference.

1.4.4. lterable objects and comprehensions

The interface | t er abl e represents a stream of values, which might be evaluated lazily. This interface is of central import-
ance in the language module, and so the language provides a syntactic abbreviation for the type of an iterable object. The
abbreviation { String*} means|terabl e<String>. Thereisaconvenient syntax for instantiating an iterable object, given
alist of values:

{String*} words = {"hello", "world", "goodbye"};

A nonempty iterable is an iterable object which aways produces at least one value. A nonempty iterabe type is written
{string+}. Distingushing nonempty streams of values lets us correctly express the type of functions like max() :

{Fl oat +} oneOrMre = .... ;

{Float*} zeroOrMre = .... ;

Fl oat nmaxCOf OneOr Mor e x(oneOrMore); //never null

Fl oat ? maxCf Zer oOr Mor max(zeroOr More); //m ght be null

Ilé

Comprehensions are an expressive syntax for filtering and transforming streams of values. For example, they may be used
when instantiating an iterable object or collection:

value adults = { for (p in people) if (p.age>18) p.nane };
val ue peopl eByName = HashMap { for (p in people) p.nane->p };

Comprehensions are evaluated lazily.

1.4.5. Sequences and tuples

Sequences are Ceylon's version of arrays. However, the Sequent i al interface does not provide operations for mutating the
elements of the sequence—sequences are considered immutable. Because this interface is so useful, a type like Sequen-
tial <String>may beabbreviatedto[ String*], or, for the sake of tradition, to String[].

A nonempty sequence is a kind of sequence which always has at least one element. A nonempty sequence type is written
[ String+]. The specia-purposei f (nonenpty ... ) construct narrows a sequence type to a nonempty sequence type.

Tuples are a kind of sequence where the type of each element is encoded into the static type of the tuple. Tupl e isjust an
ordinary class in Ceylon, but syntactic abbreviations let us write down tuple types in using a streamlined syntax. For ex-
ample, [ Fl oat, Fl oat] is apair of Fl oat S. There is aso a convenient syntax for instantiating tuples and accessing their
elements.

[Float, Float] origin = [0.0, 0.0];

Float x = origin[0];

Float y = origin[1];

Null z = origin[2]; //only two el enents!
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Chapter 2. Lexical structure

Every Ceylon source file is a sequence of Unicode characters. Lexical analysis of the character stream, according to the
grammar specified in this chapter, results in a stream of tokens. These tokens form the input of the parser grammar defined
in the later chapters of this specification. The Ceylon lexer is able to completely tokenize a character stream in a single
pass.

2.1. Whitespace

Whitespace is composed of strings of Unicode SPACE, CHARACTER TABULATI ON, FORM FEED (FF), LINE FEED (LF) and
CARRI AGE RETURN (CR) characters.

Whitespace: " " | Tab | Fornfeed | Newine | Return
Tab: "\ {CHARACTER TABULATI ON} "

Fornf eed: "\{FORM FEED (FF)}"

New i ne: "\ {LINE FEED (LF)}"

Return: "\ {CARRI ACE RETURN (CR)}"

Outside of a comment, string literal, or single quoted literal, whitespace acts as a token separator and is immediately dis-
carded by the lexer. Whitespace is not used as a statement separator.

Source text is divided into lines by line-terminating character sequences. The following Unicode character sequences ter-
minate aline:

e LINE FEED (LF),
e CARRI AGE RETURN (CR), and

e CARRI AGE RETURN (CR) followed by LI NE FEED (LF).

2.2. Comments
There are two kinds of comments:
e amultiline comment beginswith / * and extends until */ , and
« an end-of-line comment beginswith // or #! and extends until the next line terminating character sequence.
Both kinds of comments can be nested.
Li neComment: ("//"|"#!'") ~(Newline | Return)* (Return Newline | Return | New ine)?
Mil tilineComment: "“/*" (MiltilineCommment Character | MiultilineComment)* "*/"
Mil tilineConmment Character: ~("/"["*") | ("/" ="*") => "[" | ("*" ="[v) => v
The following examples are legal comments:

//this comment stops at the end of the line

/*
but this is a conment that spans
multiple lines

*/

#!/ usr/ bi n/ ceyl on
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Comments are treated as whitespace by both the compiler and documentation compiler. Comments may act as token separ-
ators, but their content isimmediately discarded by the lexer and they are not visible to the parser.
2.3. Identifiers and keywords
Identifiers may contain upper and lowercase letters, digits and underscores.
Lower caseChar: Lowercaseletter |
Upper caseChar: UppercaselLetter

IdentifierChar: LowercaseChar | UppercaseChar | Nunber

The lexer classifies Unicode uppercase | etters, lowercase letters, and numeric characters depending on the general category
of the character as defined by the Unicode standard. A Lower caseLet t er iSany character whose general category isLl . An
Upper caseLet t er is any character whose general category is Lu, Lt, Or Lo. A Nurber is any character whose general cat-
egory isNd, NI, or No.

All identifiers are case sensitive: Per son and per son are two different legal identifiers.
The lexer distinguishes identifiers which begin with an initial uppercase character from identifiers which begin with an ini-
tial lowercase character or underscore. Additionally, an identifier may be qualified using the prefix \i or\1 to disambigu-
ate it from areserved word or to explicitly specify whether it should be considered an initial uppercase or initial lowercase
identifier.

Ll dentifier: LowercaseChar ldentifierChar* | "\i" IdentifierChar+

U dentifier: UppercaseChar ldentifierChar* | "\Il" IdentifierChar+

The following examples are legal identifiers:

Per son
nane

per sonNane
_id

x2

\1_id

\' | obj ect

\'i Obj ect
\iclass

The prefix \1 or\i isnot considered part of the identifier name. Therefore, \i per son isjust aninitial lowercase identifier
named per son and\ | per son isan initial uppercase identifier named per son.

The following reserved words are not legal identifier names unless they appear escaped using\i or\1:

assenbly nodul e package inmport alias class interface object given value assign void function new of
extends satisfies abstracts in out return break continue throw assert dynamc if else switch case for
while try catch finally then let this outer super is exists nonenpty

Note: abstracts, new, and | et arereserved for possible use in a future release of the language.
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2.4. Literals

A literal is asingle token that represents a Unicode character, a character string, or a numeric value.

2.4.1. Numeric literals

An integer literal may be expressed in decimal, hexadecimal, or binary notation:

IntegerLiteral: DecimalLiteral | HexLiteral | BinLiteral
A decimal literal hasalist of digits and an optional magnitude:
Decimal Literal : Digits Magnitude?
Hexadecimal literals are prefixed by #:
HexLiteral : "#" HexDigits
Binary literals are prefixed by $:
BinLiteral: "$" BinDigits
A floating point literal is distinguished by the prescence of a decimal point or fractional magnitude:

FloatLiteral: Nornal FloatLiteral | ShortcutFloatLiteral

Most floating point literals have alist of digits including adecimal point, and an optional exponent or magnitude.

Nornal FloatLiteral: Digits "." Fractional Digits (Exponent | Magnitude | Fractional Magnitude)?

The decimal point is optional if afractional magitude is specified.

ShortcutFloatLiteral: Digits Fractional Magnitude

Decimal digits may be separated into groups of three using an underscore.
Digits: Digit+ | Digit{1..3} ("_" Digit{3})+
Fractional Digits: Digit+ | (Digit{3} "_")+ Digit{l..3}

Hexadecimal or binary digits may be separated into groups of four using an underscore. Hexadecimal digits may even be
separated into groups of two.

HexDigits: HexDigit+ | HexDigit{1l..4} ("_" HexDigit{4})+ | HexDigit{1l..2} ("_" HexDigit{2})+
BinDigits: BinDigit+ | BinDigit{l1l..4} ("_" Digit{4})+
A digit isadecimal, hexadecimal, or binary digit.
Digit: "0o".."9"
HexDigit: "O0".."9" | "A".."F" | "a".."f"
BinDigit: "0"|"1"

A floating point literal may include either an exponent (for scientific notation) or a magnitude (an Sl unit prefix). A decim-
al integer literal may include a magnitude.

Exponent: ("E'[|"e") ("+"|"-")? Digit+

Magni tude: "k" | "M | "G | "T" | "P"
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Fractional Magni tude: "nmi | "u" | "n" | "p" | "f"
The magnitude of a numeric literal isinterpreted as follows:

e k meanse+3,

e MmMmeanse+6,

e GmMmeanse+9,

e Tmeanse+12,

* PmMmeanse+15,

* mmeanse- 3,

* umMmeanse-6,

* nmMmeanse-9,

e pmeanse-12, and
e f meanse- 15.
The following examples are legal numeric literals:

69

0. 999e-10
1. 0E2
10000
1_000_000
12_345.678_9
1.5k

12M

2. 34p

5u
$1010_0101
#DOOD
#FF_FF_FF

The following are not valid numeric literals:

.33 //Error: floating point literals may not begin with
1. //Error: floating point literals may not end with a d

99E+3 //Error: floating point literals with an exponent

a deci mal point

eci mal point

must contain a deci nal

poi nt
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1234 //Error: decimal digit groups nust be of length three

#FF.00 //Error: floating point numbers may not be expressed in hexadeci mal notation

2.4.2. Character literals
A single character literal consists of a Unicode character, inside single quotes.
CharacterLiteral: "'" Character "'"

Character: ~("'" | "\") | EscapeSequence

A character may be identified by an escape sequence. Every escape sequence begins with a backslash. An escape sequence
is replaced by its corresponding Unicode character during lexical analysis.

EscapeSequence: "\" (SingleCharacterEscape | "{" CharacterCode "}")
Si ngl eChar act er Escape: "b" | "t™ | "n" | "f* | Tre | AT | tevo | e e
The single-character escape sequences have their traditional interpretations as Unicode characters:

* \'b means BACKSPACE,

* \t Means CHARACTER TABULATI ON,

* \nmeansLI NE FEED (LF),

* \f meansFORM FEED (FF),

* \r Means CARRI AGE RETURN (CR), and

* \\,\",\',and\" mean REVERSE SOLI DUS, GRAVE ACCENT, APOSTROPHE, and QUOTATI ON MARK, respectively.

A Unicode codepoint escape is afour-digit or eight-digit hexadecimal literal, or a Unicode character name, surrounded by
braces, and means the Unicode character with the specified codepoint or character name.

Char act er Code: "#" ( HexDigit{4} | HexDigit{8} ) | UnicodeCharacterNanme

Legal Unicode character names are defined by the Unicode specification.

Thefollowing arelegal character literals:

"\ {#2128B}"

"\ {ALCHEM CAL SYMBOL FOR GOLD}'

2.4.3. String literals

A character string literal is a sequence of Unicode characters, inside double quotes.

StringLiteral: """ StringCharacter* """

StringCharacter: ~( "\" | """ | """ ) | """ ~""" | EscapeSequence
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A string literal may contain escape sequences. An escape sequence is replaced by its corresponding Unicode character dur-
ing lexical analysis.

A sequence of two backticksis used to delimit an interpolated expression embedded in a string templ ate.

StringStart: """ StringCharacter* "
StringMd: """ StringCharacter* "
StringEnd: """ StringCharacter* """

A verbatim string is a character sequence delimited by a sequence of three double quotes. Verbatim strings do not contain
escape sequences or interpolated expressions, so every character occurring inside the verbatim string is interpreted liter-
aly.

VerbatintBtringLiteral: """"" VerbatinCharacter* """""

Verbati nCharacter: ~""" | """ ~"weo|onneowwnwen
Thefollowing are legal strings:

"Hel |l o!"

"\ {00E5} ngst r\ { OOF6} ns"

"NtA\n\f\r, ;"

"\{POLI CE CAR} \{TROLLEYBUS} \{WOVAN W TH BUNNY EARS}"

"""This programprints "hello world" to the console."""

The column in which the first character of a string literal occurs, excluding the opening quote characters, is called the ini-
tial column of the string literal. Every following line of a multiline string literal must contain whitespace up to the initial
column. That is, if the string contents begin at the nth character in a line of text, the following lines must start with n
whitespace characters. This required whitespace is removed from the string literal during lexical analysis.

2.5. Operators and delimiters

The following character sequences are operators and/or punctuation:

[] 5 2. 2 % = =>4 %[ %A * 44 .o .>1 & || ~ & | === == I= < > <= >=

A
= (V(;|:&:~:||:&&:

<=> 4= -= [= *

|| N

Certain symbols serve dual or multiple purposesin the grammar.
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Chapter 3. Type system

Every vaue in a Ceylon program is an instance of a type that can be expressed within the Ceylon language as a class. The
language does not define any primitive or compound types that cannot, in principle, be expressed within the language it-
self.

A class, fully defined in 84.5 Classes, is a recipe for producing new values, called instances of the class (or simply
objects), and defines the operations and attributes of the resulting values. A class instance may hold references to other ob-
jects, and has an identity distinct from these references.

Each class declaration defines atype. However, not all types are classes. It is often advantageous to write generic code that
abstracts the concrete class of a value. This technique is called polymorphism. Ceylon features two different kinds of poly-
morphism:

¢ subtype polymorphism, where a subtype B inherits a supertype A, and
« parametric polymorphism, where a type definition A<T> is parameterized by a generic type parameter T.

Ceylon, like Java and many other object-oriented languages, features a single inheritance model for classes. A class may
directly inherit at most one other class, and all classes eventually inherit, directly or indirectly, the class Anyt hi ng defined
in the module ceyl on. | anguage, which acts as the root of the class hierarchy.

A truly hierarchical type system is much too restrictive for more abstract programming tasks. Therefore, in addition to
classes, Ceylon recognizes the following kinds of type:

« Aninterface, defined in 84.4 Interfaces, is an abstract type schemathat cannot itself be directly instantiated. An inter-
face may define concrete members, but these members may not hold references to other objects. A class may inherit
one or more interfaces. An instance of a class that inherits an interface is also considered an instance of the interface.

e A generic type parameter, defined in 83.5 Generic type parameters, is considered a type within the declaration that it
parameterizes. In fact, it is an abstraction over many types: it generalizes the declaration to all types which could be as-
signed to the parameter.

* An applied type, defined in §3.6 Generic type arguments, is formed by specifying arguments for the generic type para-
meters of a parameterized type.

« A union type, defined in §3.2.3 Union types, is atype to which each of an enumerated list of typesis assignable.

* Anintersection type, defined in §3.2.4 Intersection types, is atype which is assignable to each of an enumerated list of
types.

Although we often use the term parameterized type or even generic type to refer to a parameterized type definition, it is
important to keep in mind that a parameterized type definition is not itself atype. Rather, it is a type constructor, a func-
tion that maps types to types. Given alist of type arguments, the function yields an applied type.

In light of the fact that Ceylon makes it so easy to construct new types from existing types without the use of inheritance,
by forming unions, intersections, and applied types, it's often useful to assign a name to such atype.

e A type alias, defined in 84.6 Type aliases, 84.5.9 Class dliases, and 84.4.4 Interface aliases, is a synonym for an ex-
pression involving other types or generic types. A type alias may itself be generic.

The Ceylon type system is much more complete than most other object oriented languages. In Ceylon, it's possible to an-
swer gquestions that might at first sound almost nonsensical if you're used to languages with more traditional type systems.
For example:

e What isthe type of avariable that may or may not hold avalue of type El enent ?
« What isthe type of a parameter that accepts either an | nt eger or aFl oat ?
*  What isthe type of aparameter that accepts values which are instances of both Per si st ent and Pri nt abl e?

« What isthe type of afunction which accepts any non-null value and returnsa st ri ng?
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* What is the type of a function that accepts one or more St ri ngs and returns an iterable object producing at least one
String?

* What isthe type of a sequence consisting of a st ri ng followed by two FI oat S?
e What isthetype of alist with no elements?

The answers, as we shall see, are Elenent?, Integer|Float, Persistent&Printable, String(bject),
{String+}(String+),[String,Float, Float], and Li st <Not hi ng>.

It's important that there is always a unique "best" answer to questions like these in Ceylon. The "best" answer is called the
principal type of an expression. Every other type to which the expression is assignable is a supertype of the principal type.

Thus, every legal Ceylon expression has a unique, well-defined type, representable within the type system, without refer-
ence to how the expression is used or to what type it is assigned. This is the case even when type inference or type argu-
ment inference comes into play.

Neither this specification nor the internal implementation of the Ceylon compiler itself use any kind of "non-denotable"
types. Every type mentioned here or inferred internally by the compiler has a representation within the language itself.
Thus, the programmer is never exposed to confusing error messages referring to mysterious types that are not part of the
syntax of the language.

3.1. Identifier naming

The Ceylon compiler enforces identifier naming conventions. Types must be named with an initial uppercase letter. Meth-
ods, attributes, parameters, and locals must be named with an initial lowercase letter or underscore. The grammar for iden-
tifiersis defined by §2.3 Identifiers and keywords.

TypeName: Ul dentifier
Menmber Name: Lldentifier

A package or module name is a sequence of identifiers, each with an initial lowercase letter or underscore.

PackageNane: Lldentifier
Ceylon defines three identifier namespaces:

» classes, interfaces, type aliases, and type parameters share a single namespace,

e functions, values, and parameters share a single namespace, and

e packages have their own dedicated namespace.

The Ceylon parser is able to unambiguously identify which namespace an identifier belongs to.

An identifier that begins with an initial lowercase letter may be forced into the namespace of types by prefixing the identi-
fier \1. An identifier that begins with an initial uppercase letter may be forced into the namespace of methods and attrib-
utes by prefixing the identifier \i . A keyword may be used as an identifier by prefixing the keyword with either \i or\1.
This allows interoperation with languages like Java which do not enforce these naming conventions.

3.2. Types
A type or type schema is a name (an initial uppercase identifier) and an optional list of type parameters, with a set of:
» value schemas,

« function schemas, and

¢ class schemas.

Project Ceylon: Final release draft (1.0) 14



Type system

The value, function, and class schemas are called the members of the type.

Speaking formally:

A value schema is aname (an initial lowercase identifier) with atype and mutability.

A function schema is a name (an initial lowercase identifier) and an optional list of type parameters, with a type (often
called the return type) and a sequence of one or more parameter lists.

A class schema is atype schema with exactly one parameter list.

A parameter list isalist of names (initial lowercase identifiers) with types. The signature of a parameter list is formed
by discarding the names, leaving the list of types.

Speaking dightly less formally, we usually refer to an attribute, method, or member class of a type, meaning a value
schema, function schema, or class schemathat is a member of the type.

A function or value schema may occur outside of atype schema. If it occurs directly in a compilation unit, we often call it
atoplevel function or toplevel value.

A vaue schema, function schema, or parameter list with a missing type or types may be defined. A value schema, function
schema, or parameter list with amissing typeis called partially typed.

Two signatures are considered identical if they have exactly the same types, at exactly the same positions, and missing
types at exactly the same positions.

3.2.1. Member distinctness

Overloading isillegal in Ceylon. A type may not have:

two attributes with the same name,
amethod and an attribute with the same name,
two methods with the same name, or

two member classes with the same name.

3.2.2. Subtyping

A type may be a subtype of another type. Subtyping obeys the following rules:

Identity: X is a subtype of x.
Transitivity: if X isasubtype of Y and Y is a subtype of z then X is a subtype of z.
Noncircularity: if X isasubtype of Y and Y is a subtype of x then y and x are the same type.

Single root: al types are subtypes of the class Anyt hi ng defined in the module ceyl on. | anguage.

Every interface type is a subtype of the class bj ect defined in ceyl on. | anguage.

If X isasubtype of v, then:

For each non-vari abl e attribute of v, X has an attribute with the same name, whose type is assignabl e to the type of the
attribute of v.

For each vari abl e attribute of v, X hasavari abl e attribute with the same name and the same type.

For each method of v, X has a method with the same name, with the same number of parameter lists, with the same sig-
natures, and whose return type is assignabl e to the return type of the method of v.

For each member class of v, X has amember class of the same name, with a parameter list with the same signature, that
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is asubtype of the member class of v.

Furthermore, we say that X isassignableto v.

3.2.3. Union types

For any types x and Y, the union, or digunction, X| Y, of the types may be formed. A union type is a supertype of both of
the given types x and v, and an instance of either type is an instance of the union type.

The union type constructor | isassociative, so the union of threetypes, X, Y, and z, may be written x| v| z.

Uni onType: IntersectionType ("|" IntersectionType)*

If X and Y are both subtypes of athird type z, then X| v inherits al members of z.

void wite(String|Integer|Float printable) { ... }
Union types satisfy the following rules, for any types x, v, and z:

o Commutativity: X| Y isthe same type asy| x.

e Associativity: X| (Y] 2) isthesametypeas(X Y)| z.

« Simplification: if X isasubtype of v, then x| Y isthe sametypeasy.

e Subtypes: X is asubtype of X Y.

« Supertypes: if both x and Y are subtypes of z, then x| Y is also a subtype of z.

The following results follow from these rules:

e X| Not hi ng isthe sametype as x for any type x, and
e X| Anyt hi ng isthe sametype as Anyt hi ng for any type x.

Finally:

e If x<T> is covariant in the type parameter T, then x<U>| X<v> is a subtype of x<y| v> for any types U and Vv that satisfy
the type constraints on T.

« |If x<T> is contravariant in the type parameter T, then X<U>| X<V> is a subtype of X<ugv> for any types u and Vv that satis-
fy the type constraintson T.

3.2.4. Intersection types

For any types x and v, the intersection, or conjunction, x&Y, of the types may be formed. An intersection type is a subtype
of both of the given types x and v, and any object which is an instance of both typesis an instance of the intersection type.

The intersection type constructor & is associative, so the intersection of three types, X, v, and z, may be written x&v&z.

I ntersectionType: PrinmaryType ("&' PrinmaryType)*
The intersection x&y inherits all members of both x and v.

voi d store(Persistent&Printabl e& dentifiable storable) { ... }
Intersection types satisfy the following rules, for any types x, v, and z:

« Commutativity: X&Y isthe same type as Y&x.

e Associativity: x&( Y&z) isthe sametype as ( X&Y) &z.
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« Simplification: if X isasubtype of v, then x&Y is the same type as X.

e Supertypes: X is asupertype of X&y.

e Subtypes: if both X and Y are supertypes of z, then x&y is also a supertype of z.
« Distributivity over union: X&( Y| z) isthe sametype as (X&Y) | ( X&2) .

The following results follow from these rules:

e X&Not hi ng isthe same type as Not hi ng for any type X, and
e  X&Anyt hi ng isthe sametype as x for any type x.

Finally:

e |If x<T> is covariant in the type parameter T, then x<U>&x<V> is a supertype of x<u&v> for any types u and v that satisfy
the type constraintson T.

e |If x<T> iscontravariant in the type parameter T, then x<u>&x<V> is a supertype of x<u) v> for any typesu and v that sat-
isfy the type constraintson T.

3.2.5. The bottom type

The special type Not hi ng, sometimes called the bottom type, represents:

» theintersection of al types, or, equivalently

e theempty set.

Not hi ng is assignable to all other types, but has no instances.

The type schemafor Not hi ng isempty, that is, it is considered to have no members.

Not hi ng is considered to belong to the module ceyl on. | anguage. However, it cannot be defined within the language.

Because of the restrictions imposed by Ceylon's mixin inheritance model:

e |If xand Y areclasses, and x is not a subclass of v, and v is not a subclass of X, then the intersection type x&y is equival-
ent to Not hi ng.

* If Xisan interface, the intersection type X&nul | is equivalent to Not hi ng.

e |If xisaninterface, and yisafinal class, and Y is not a subtype of X, then the intersection type X&y is equivalent to
Not hi ng.

e |If x<T> is invariant in its type parameter T, and the distinct types A and B do not involve type parameters, then
X<A>&X<B> iS equivalent to Not hi ng.

TODO: Should the name of this type be a keyword, perhaps not hi ng, to emphasize that it is defined primitively?

3.2.6. Principal typing

An expression, as defined in Chapter 6, Expressions, occurring at a certain location, may be assignable to a type. In this
case, every evaluation of the expression at runtime produces an instance of a class that is a subtype of the type, or resultsin
athrown exception, as defined in Chapter 8, Execution.

Given an expression occurring at a certain location, atype T is the principal type of the expression if, given any type U to
which the expression is assignable, T is a subtype of u. Thus, the principal type is the "most precise" type for the expres-
sion. The type system guarantees that every expression has a principal type. Thus, we refer uniquely to the type of an ex-
pression, meaning its principal type at the location at which it occurs.
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3.2.7. Type expressions
Function and value declarations usually declare atype, by specifying atype expression.
Type: UnionType | EntryType
Type expressions are formed by combining types using union, intersection, and type abbreviations.
Type expressions support grouping using angle brackets:
G oupedType: "<" Type ">"

Applied types are identified by the name of the type (a class, interface, type dias, or type parameter), together with alist of
type arguments if the type declaration is generic.

TypeNameW t hAr gunent s: TypeName TypeAr gunent s?

Type names are resolved to type declarations according to §5.1.7 Unqualified reference resolution and §5.1.8 Qualified
reference resolution.

The type argument list, if any, must conform, as defined by §3.6.1 Type arguments and type constraints, to the type para-
meter list of the realization of the type declaration, as defined by §3.7.6 Realizations.

Note: thisistoo heavy-handed. There is no reason to enforce types constraint in any place other than generic class instan-
tiations, generic function invocations, ext ends, and sat i sfi es. However, this restriction makes interoperation with Java
generics more straightforward.

If the type isaclass, interface, or type alias nested inside a containing class or interface, the type must be fully qualified by
its containing types, except when used inside the body of a containing type.

Qual i fiedType: TypeNameWthArgunments ("." TypeNameWthArgunents)*

If atype declaration is generic, a type argument list must be specified. If atype declaration is not generic, no type argu-
ment list may be specified.

Buf f er edReader . Buf f er

Ent r y<I nt eger, El enent >

Note: the name of a type may not be qualified by its package name. Alias imports, as defined in §84.2.3 Alias imports may
be used to disambiguate type names.

3.2.8. Type abbreviations
Certain important types may be written using an abbreviated syntax.

PrimaryType: Atom cType | Optional Type | SequenceType | Call abl eType
Atom cType: QualifiedType | EnptyType | Tupl eType | Iterabl eType | G oupedType

First, there are postfix-style abbreviations for optional types, sequence types, and callable types.

Opti onal Type: PrimaryType "?"
SequenceType: PrimaryType "[" "]"
Cal | abl eType: PrimaryType "(" TypeList? ")"

» x? meansNul | | X for any type X,

e X[] meansSequent i al <x>for any type x, and
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* X(Y,2) meanscal l abl e<X, [Y, Z] > whereY, z isalist of types of any length.

More precisely, the type meant by a callable type abbreviation is cal | abl e<X, T> where X is the type outside the paren-
theses in the the callable type abbreviation, and T is the tuple type formed by the types listed inside the parentheses.

Next, abbreviations for iterable types are written using braces.

Iterabl eType: "{" UnionType ("*"|"+") "}"

e {X*} meansiterabl e<X, Nul | > for any type X, and

e {X+} means|terabl e<X, Not hi ng> for any type X.

Next, abbreviations for sequence types and tuple types may be written using brackets.
EnptyType: "[" "]"
Tupl eType: "[" TypeList "]"

TypeList: (EntryType ",")* UnionType ("*"|"+")?

e [X*] meansSequenti al <X> for any type X,

* [] meansEnpty,

e [ Xx+] means Sequence<x> for any type X, and

e [X Y] meansTupl e<X| Y, X, Tupl e<Y, Y, [] >> where X, Y isalist of types of any length.

More precisely:

e A tuple type abbreviation of form [X, ... ] means the type Tupl e<X| Y, X, T> where T is the type meant by the type
abbreviation formed by removing the first type x from the list of typesin the original tuple type abbreviation, and T has
the principal instantiation Y[ ], as defined in §3.7 Principal instantiations and polymorphism.

Finally, an entry type may be abbreviated using an arrow.

EntryType: UnionType "->" Uni onType

e X->YMmeansEntry<X, Y>, for any typesx, Y.
Note: the abbreviations T[] and [ T*] are synonyms. The syntax T[] is supported for reasons of nostalgia.
Abbreviations may be combined:

String?[] words = { "hello", "world", null };
String? firstWord = words[O0];

String->[Integer,Integer] onetwo = "onetwo"->[1, 2];

[Float+] (Float x, Float[] xs) add = (Float x, Float[] xs) => [x, *Xxs];

When atype appearsin avalue expression, these abbreviations cannot be used (they cannot be disambiguated from operat-
Or expressions).

3.2.9. Type inference

Certain declarations which usually require an explicit type may omit the type, forcing the compiler to infer it, by specify-
ing the keyword val ue, as defined in §4.8.4 Value type inference, or functi on, as defined in §4.7.4 Function return type
inference, where the type usually appears.

val ue nanes = peopl e*. nane;
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function parse(String text) => text.split(" .!?2,:;()\n\f\r\t".contains);

Type inferenceis only allowed for declarations which are referred to only by statements and declarations that occur within
the lexical scope of the declaration, as specified by 85.1.6 Type inference and block structure. A val ue or functi on de-
claration may not:

e beannotated shar ed, as defined in §5.1.3 Visibility,

e occur as atoplevel declaration in a compilation unit, as defined in §4.1.1 Toplevel and nested declarations, or

» bereferred to by statements or declarations that occur earlier in the body containing of the declaration, as defined in
85.1 Block structure and references.

Nor may a parameter or forward-declared value, as defined in §4.8.5 Forward declaration of values, or of a forward-de-
clared function, as defined in 84.7.5 Forward declaration of functions, have an inferred type.

These restrictions allow the compiler to infer undeclared typesin a single pass of the code.

Note: in future releases of the language, the inferred type will be context-dependent, that is, in program elements immedi-
ately following an assignment or specification, the inferred type will be the type just assigned. When conditional execution
results in definite assignment, the inferred type will be the union of the conditionally assigned types. This will allow us to
to relax the restriction that forward-declared functions and values can't have their type inferred. For example:

val ue one;

if (float) {
one = 1.0;
Fl oat fl oat

one;

el se {
one = 1;
I nteger int

one;

Fl oat | I nt eger num = one;

An inferred type never involves an anonymous class, as defined in §4.5.7 Anonymous classes. When an inferred type
would involve an anonymous class type, the anonymous class is replaced by the intersection of the class type it extends
with all interface typesit satisfies.

TODO: properly define how expressions with no type occurring in a dynani ¢ block affect type inference.

3.2.10. Type alias elimination

A type aliasis a synonym for another type. A generic type aliasis atype constructor that produces atype dias, given alist
of type arguments.

Every type alias must be reducible to an equivalent type that does not involve any type aliases by recursive replacement of
type aliases with the types they alias. Thus, circular type alias definitions, asin the following example, areillegal:

alias X => List<Y>;
alias Y => List<X>;

Replacement of type aliases with the types they alias occurs at compile time, so type aliases are not reified types, as spe-

cified in §8.1.2 Type argument reification.

3.3. Inheritance

Inheritance is a static relationship between classes, interfaces, and type parameters:

e aclassmay extend another class, as defined by §4.5.4 Class inheritance,

* aclassmay satisfy one or more interfaces, as defined by §4.5.4 Class inheritance,

« aninterface may satisfy one or more other interfaces, as defined by §4.4.2 Interface inheritance, or
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e atype parameter may satisfy a class and/or one or more interfaces or type parameters, as defined by §3.5.3 Generic
type constraints.

If atype declaration extends or satisfies atype, we say it inherits the type.

Inheritance relationships may not produce cycles, since that would violate the noncircularity rule for subtyping. Thus, a
class, interface, or type parameter may not, directly or indirectly, inherit itself.

Note: when a type declaration specifies a relationship to other types, Ceylon visually distinguishes between a list of types
which conceptually represents a combination of (intersection of) the types, and a list of types which represents a choice
between (union of) the types. For example, when a class c satisfies multiple interfaces, they are written as x&y&z. On the

other hand, the cases of an enumerated class E are written as x| Y| z. This syntax emphasizes that C is also a subtype of the
inter section type X&y&z, and that E may be narrowed to the union type X| Y| Z using a swi t ch statement or the of operator.

3.3.1. Inheritance and subtyping

Inheritance rel ationships between classes, interfaces, and type parameters result in subtyping relationships between types.

« |f atypexinheritsatype', then X is a subtype of v.
« If ageneric type X inherits atype Yy that might involve the type parameters of X, then for any instantiation u of X we can

construct a type v by, for every type parameter T of X, substituting the corresponding type argument of T given in u
everywhere T occursin v, and then u is a subtype of v.

3.3.2. Extension

A class may extend another class, in which case the first class is a subtype of the second class and inherits its members.

Ext endedType: "extends" ("super" ".")? TypeNaneWthArguments Positional Argunments

The ext ends clause must specify exactly one superclass.

e |f the superclassis a parameterized type, the ext ends clause must also explicitly specify type arguments.
* Theextends clause must specify arguments for theinitializer parameters of the superclass.
The type arguments may not be inferred from the initializer arguments.

ext ends Person(nane, org)

A member class annotated act ual may use the qualifier super inthe ext ends clause to refer to the member classit refines.
When the qualifier super appears, the following class name refers to a member class of the superclass of the class that
contains the member class annotated act ual .

ext ends super.Buffer()

Theroot class Anyt hi ng defined in ceyl on. | anguage does not have a superclass.

3.3.3. Satisfaction

Thesati sfies clause does double duty. It's used to specify that a class or interface is a direct subtype of one or more in-
terfaces, and to specify upper bound type constraints applying to a type parameter.

Note: for this reason the keyword is not named "i npl ement s". It can't reasonably be said that a type parameter "imple-
ments" its upper bounds. Nor can it be reasonably said that an interface "implements" its super-interfaces.

« A classor interface may satisfy one or more interfaces, in which case the class or interface is a subtype of the satisfied
interfaces, and inherits their members.

« A type parameter may satisfy one or more interfaces, optionally, a class, and optionally, another type parameter. In this
case, the satisfied types are interpreted as upper bound type constraints on arguments to the type parameter.
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Note: currently, a type parameter upper bound may not be specified in combination with other upper bounds. This restric-
tion will likely be removed in future.

Sati sfiedTypes: "satisfies" PrimaryType ("&" PrimaryType)*

The sati sfies clause may specify multiple types. If a satisfied type is a parameterized type, the sati sfi es clause must
specify type arguments.

sati sfies Sequence<El enent> & Col | ecti on<El enent >

3.4. Case enumeration and coverage

Coverage is a static relationship between classes, interfaces, and type parameters, produced through the use of case enu-
meration:

e« Anabstract class or interface may be an enumerated type, with an enumerated list of digoint subtypes called cases,
as defined by §4.5.8 Classes with enumerated cases and §4.4.3 I nterfaces with enumerated cases.

e A type parameter may have an enumerated bound, with an enumerated list possible type arguments, as defined by
8§3.5.3 Generic type constraints.

« Anabstract classor interface may have a self type, atype parameter representing the concrete type of an instance.

3.4.1. Coverage

Coverageis a strictly weaker relationship than assignability:

« If atypeisasubtype of a second type, then the second type covers the first type.
< |If atype has aself type, then its self type covers the type.
e |If atype X enumerates its cases X1, X2, etc, then the union x1| x2| . . . of its cases covers the type.

« |If ageneric type X enumerates its cases, X1, X2, etc, which might involve the type parameters of x, then for any instanti-
ation u of X, and for each case xi , we can construct atype Ui by, for every type parameter T of X, substituting the cor-
responding type argument of T given in U everywhere T occursin Xi , and then the union type u1| u2| . .. of all theres-
ulting types Ui coversy.

e |If atype x coverstwo types A and B, then x also covers their union A| B.
e Coverageistrangitive. If x coversy and Y covers z, then X covers z.

It follows that coverage obeys the identity property of assignability: a type coversitself. However, coverage does not obey
the noncircularity property of assignability. It is possible to have distinct types A and B where A covers B and B covers A.

Case enumeration allows safe use of atypein aswi t ch statement, or as the subject of the of operator. The compiler isable
to statically validate that the swi t ch contains an exhaustive list of all cases of the type, by checking that the union of cases
enumerated in the swi t ch coversthe type, or that the second operand of of coversthe type.

Note: however, a type is not considered automatically assignable to the union of its cases, or to its self type. Instead, the
type must be explicitly narrowed to the union of its cases, or to its self type, using either the of operator or the swi tch
construct. This narrowing type conversion can be statically checked—if X coversy then vy of Xisguaranteed to succeed at
runtime. Unfortunately, and quite unintuitively, the compiler is not able to analyse coverage implicitly at the same time as
assignability, because that results in undecidability!

3.4.2. Cases

Theof clause does triple duty. It's used to define self types and type families, enumerated types, and enumerated type con-
straints. The of clause may specify multiple types, called cases.

CaseTypes: "of" CaseType ("|" CaseType)*
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CaseType: MenberNanme | PrimaryType

If an interface or abstract class with an of clause has exactly one case, and it is a type parameter of the interface or ab-
stract class, or of the immediately containing type, if any, then that type parameter is a self type of the interface or ab-
stract class, and:

« the self type parameter covers the declared type within the body of the declaration,
e thetype argument to the self type parameter in an instantiation of the declared type covers the instantiation, and

* every type which extends or satisfies an instantiation of the declared type must also be covered by the type argument to
the self type parameter in the instantiation.

shared abstract class Conparabl e<Qt her>() of O her
given Ot her satisfies Conparabl e<Qt her> {

shared formal Integer conpare(Qher that);

shared | nteger reverseConpare(Q her that) => that.conpare(this) of Oher;

Conpar abl e<lItenm> conmp = ...
Itemitem = conp of Iltem

Otherwise, an interface or abst ract classwith an of clause may have multiple cases, but each case must be either:

e asubtype of theinterface or abst ract class, or

< avalue reference to atoplevel anonymous class that is a subtype of the interface or abst ract class.

Then the interface or abst ract classis an enumerated type, and every subtype of the interface or abst ract class must be a
subtype of exactly one of the enumerated subtypes. A class or interface may not be a subtype of more than one case of an

enumerated type.

of larger | smaller | equal
of Root <El enent > | Leaf <El ement> | Branch<El enent >

A type parameter with an of clause may specify multiple cases, as defined in §3.5.3 Generic type constraints.

3.4.3. Generic enumerated types

If a generic enumerated type x has a case type C, then ¢ must directly extend or satisfy an instantiation Y of X, and for each
type parameter T of X and corresponding argument A of T givenin'y, either:

e Xiscovariantin T and Ais exactly Not hi ng,

e Xxiscontravariant in T and A is exactly the intersection of all upper bounds on T, or Anyt hi ng if T has no upper bounds,
or

e cCisaninstantiation of a generic type G and A is exactly s for some type parameter s of G, and s must have the same
variance asT.

For example, the following covariant enumerated typeislegal:

i nterface List<out Elenent>

of Cons<Element> | nil { ... }
cl ass Cons<out El ement >( El ement el enent)

satisfies List<Element> { ... }
obj ect nil

satisfies List<Nothing>{ ... }
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Asisthefollowing contravariant enumerated type:

i nterface Consurer<in Event>
of Logger | Handl er <Event >
gi ven Event satisfies AbstractEvent { ... }

i nterface Logger
sati sfies Consunmer<AbstractEvent> { ... }

i nterface Handl er<in Event >

sati sfies Consuner<Abstract Event >
given Event satisfies AbstractEvent { ... }

But the following enumerated typeis not legal, sinceiit is possible to choose alegal argument T of the type parameter Type
of Expressi on, such that the case types St ri ngExpressi on and Nureri cExpr essi on aren't subtypes of the instantiation
Expr essi on<T>:.

i nterface Expression<out Type>
of Function<Type> | String | Number { ... }

i nterface Function<out Type>
sati sfies Expression<Type> { ... }

interface String
satisfies Expression<String> { ... }

i nterface Nunber
satisfies Expression<integer|Float>{ ... }

Note: these rules could be relaxed to allow the definition of generic enumerated types where the list of cases of an instanti-
ation of a generic type depends upon the given type arguments (a "generalized" algebraic type).

3.4.4. Disjoint types

Two types are said to be digoint if it isimpossible to have avalue that is an instance of both types. If X and v are digjoint,
then their intersection x&y is the bottom type Not hi ng.

Two typesx and Y are digoint if either:

« XandY areboth classes and X is not a subclass of Y and Y is not a subclass of X,
¢ Xistheclassnul I and Y isan interface,

e Xisan anonymous class or an instantiation of afi nal classand Y is an instantiation of a class of interface, and x does
not inherit v,

e Xisananonymous classor afinal classwith no type parameters and v is atype in which no type parameter reference
occurs, and x is not a suptype of v,

e Xisatype parameter and v and the intersection of the upper bounds of x are digoint,
e Xisanuniontype Al B and both Y and A are digjoint and Y and B are dijoint,
e Xisanintersection type A&B and either Y and A are digoint or Y and B are digoint, or

e xandY inherit digoint instantiations of a generic type z, that is, two instantiations of z that have the intersection Not h-

i ng, as defined below, in §3.7.2 Principal instantiation inheritance.

3.5. Generic type parameters

Function, class, and interface schemas may be parameterized by one or more generic type parameters. A parameterized
type schema defines a type constructor, a function that produces a type given a tuple of compatible type arguments. A
parameterized class or function schema defines a function that produces the signature of an invokable operation given a
tuple of compatible type arguments.

TypeParaneters: "<" (TypeParaneter ",")* TypeParaneter ">"
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A declaration with type parametersis called generic or parameterized.

< A type schema with no type parameters defines exactly one type. A parameterized type schema defines a template for
producing types. one type for each possible combination of type arguments that satisfy the type constraints specified
by the type. The types of members of the this type are determined by replacing every appearance of each type paramet-
er in the schema of the parameterized type definition with its type argument.

< A function schema with no type parameters defines exactly one operation per type. A parameterized function declara-
tion defines atemplate for producing overloaded operations. one operation for each possible combination of type argu-
ments that satisfy the type constraints specified by the method declaration.

¢ A class schema with no type parameters defines exactly one instantiation operation. A parameterized class schema
defines a template for producing overloaded instantiation operations. one instantiation operation for each possible
combination of type arguments that satisfy the type constraints specified by the class declaration. The type of the ob-
ject produced by an instantiation operation is determined by substituting the same combination of type arguments for
the type parameters of the parameterized class schema.

Note: by convention, type parameter names should be constructed from meaningful words. The use of single-letter type
parameter names is discouraged. The name of a type parameter should be chosen so that declarations within the body of
the parameterized declaration read naturally. For example, cl ass Entry<Key, | t en> iS reasonable, since Key key and
Item i temread naturally within the body of the Ent ry class. The following identifier names usually refer to a type para-
meter: El enent, O her, Thi s, Val ue, Key, | t em Argunent , Args and Resul t . Avoid, where reasonable, using these names
for interfaces and classes.

3.5.1. Type parameters and variance
A type parameter allows a declaration to be abstracted over a constrained set of types.

TypeParanmeter: Variance? TypeNane ("=" Type)

Every type parameter has a name and a variance.

Vari ance: "out" | "in"

e A covariant type parameter is indicated using the keyword out .
e A contravariant type parameter isindicated using the keyword i n.
* By default, atype parameter isinvariant.

A type parameter may, optionally, have a default type argument. A type parameter with a default type argument must oc-
cur after all type parameters without default type arguments in the type parameter list. The default type argument must sat-
isfy the constraints on the type parameter.

A default type argument may not involve the parameter for which it is the default argument, nor any type parameter of the
declaration that occurs later in the list of type parameters.

Within the body of the schema it parameterizes, a type parameter is itself atype. The type parameter is a subtype of every
upper bound of the type parameter. However, aclass or interface may not extend or satisfy atype parameter.

<Key, out Itenp
<in Message>
<out El ement =bj ect >

<in Left, in R ght, out Result>

3.5.2. Variance validation

A covariant type parameter may only appear in covariant positions of the parameterized schema. A contravariant type

Project Ceylon: Final release draft (1.0) 25



Type system

parameter may only appear in contravariant positions of the parameterized schema. An invariant type parameter may ap-
pear in any position.

Furthermore, atype with a contravariant type parameter may only appear in a covariant position in an extended type, satis-
fied type, case type, or upper bound type constraint.

Note: this restriction exists to eliminate certain undecidable cases described in the paper Taming Wildcardsin Java's Type
System, by Tate et al.

To determine if a type expression occurs in a covariant or contravariant position, we first consider how the type occurs
syntactically.

For a generic function we examine the return type of the function, which is a covariant position.
For a generic type schemawe examine each shar ed member, along with extended/satisfied types and case types.

Note: since the visibility rules are purely lexical in nature, it islegal for a member expression occurring in the body of a
class or interface to have a receiver expression other that is not a self-reference, as defined in §6.3 Self references and the
current package reference, and refer to an un-shar ed member of the class or interface. In this special case, the member is
treated asif it were shar ed for the purposes of the following variance validation rules.

* An extended type, satisfied type, or case type of the type schemaitself is a covariant position.

In ashar ed method declaration of the parameterized type schema:

e Thereturn type of the method is a covariant position.
* Any parameter type of the method is a contravariant position.
e Any upper bound of atype parameter of the method is a contravariant position.

In ashar ed attribute declaration that is not variable:

* Thetype of the attribute is a covariant position.

In ashar ed reference declaration that is variable;

e Thetype of the attribute is an invariant position.

In ashar ed nested class declaration of the parameterized type schema:

e Any initializer parameter type of the classis a contravariant position.
« Any upper bound of atype parameter of the classis a contravariant position.
* Anextended type, satisfied type, or case type of the nested class is a covariant position.

e Every covariant position of the nested class schema is a covariant position of the containing type schema. Every con-
travariant position of the nested class schema is a contravariant position of the containing type schema.

In ashar ed nested interface declaration of the parameterized type schema:

¢ Anextended type, satisfied type, or case type of the nested interface is a covariant position.

e Every covariant position of the nested interface schema is a covariant position of the containing type schema. Every
contravariant position of the nested interface schemais a contravariant position of the containing type schema.

For parameters of callable parameters, we first determine if the callable parameter itself is covariant or contravariant:

e A callable parameter of amethod or nested classis contravariant.
e A cdlable parameter of a covariant parameter is contravariant.

* A callable parameter of a contravariant parameter is covariant.
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Then:

e Thereturn type of a covariant callable parameter is a covariant position.

* Thereturn type of a contravariant callable parameter is a contravariant position.

* Thetype of aparameter of a covariant callable parameter is a contravariant position.
e Thetype of a parameter of a contravariant callable parameter is a covariant position.

Finally, to determine if atype parameter that occurs as a type argument occurs in a covariant or contravariant position, we
must consider the declared variance of the corresponding type parameter:

* A type argument of a covariant type parameter of atypein acovariant position is a covariant position.

e A type argument of a contravariant type parameter of atype in a covariant position is a contravariant position.
« A type argument of a covariant type parameter of atypein acontravariant position is a contravariant position.
* A type argument of a contravariant type parameter of atype in a contravariant position is a covariant position.
e A typeargument of an invariant type parameter of atype in any position isan invariant position.

« A typeargument of any type parameter of atypein aninvariant position is an invariant position.

3.5.3. Generic type constraints

A parameterized method, class, or interface declaration may declare constraints upon ordinary type parameters using the
gi ven clause.

TypeConstrai nts: TypeConstrai nt+

There may be at most one gi ven clause per type parameter.

TypeConstraint: "given" TypeName TypeConstraintl|nheritance
TypeConstraintlnheritance: CaseTypes? SatisfiedTypes?

Note that the syntax for a type constraint is essentially the same syntax used for other type declarations such as class and
interface declarations.

There are two different kinds of type constraint:

< Anupper bound, gi ven X satisfies T, specifiesthat the type parameter X is a subtype of agiventypeT.

e Anenumerated bound, gi ven X of T| U Vv specifiesthat the type parameter X represents one of the enumerated types.
Thetypes listed in an enumerated bound must be mutually digoint, and each type must be a class or interface type.
TODO: Should we allow unions in upper bounds? Should we allow inter sections in enumerated bounds?

A single gi ven clause may specify multiple constraints on a certain type parameter. In particular, it may specify multiple
upper bounds together with an enumerated bound. If multiple upper bounds are specified, at most one upper bound may be
aclass, and at most one upper bound may be a type parameter.

Note: in Ceylon 1.0, a type parameter with multiple upper bounds may not have an upper bound which is another type
parameter.

gi ven Val ue satisfies Odinal & Conparabl e<Val ue>
given Quantities satisfies Correspondence<Key, Deci mal >

given Argunent of String | Integer | Float
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A type parameter is a subtype of its upper bounds.

cl ass Hol der <Val ue>(shared Val ue val ue)
ext ends Obj ect
gi ven Val ue satisfies Object {
shared actual Bool ean equal s(Obj ect that) {
if (is Holder<Value> that) {
return val ue==t hat . val ue;

el se {
return fal se;
}

shared actual Integer hash => val ue. hash;

}

Every type parameter has an implicit upper bound of type Anyt hi ng.
An enumerated bound allows the use of an exhaustive swi t ch with expressions of the parameter type.

Char act ers uppercase<Char act ers>(Characters chars)
given Characters of String | Range<Character> {
switch (Characters)
case (satisfies String) {
return chars. uppercased;
}

case (satisfies Range<Character>) {
return chars. first.uppercased..chars.|ast. uppercased;
}

}

TODO: Do we need lower bound type constraints? The syntax would be:

given T abstracts One| Two

With union types they don't appear to be anywhere near as useful. However, perhaps they are useful when combined with
contravariant types. (A lower bound on a parameter which occurs as the argument of a contravariant type is more like an
upper bound).

Note: since we have reified types, it would be possible to support a type constraint that allows instantiation of the type
parameter.

given T(Object arg)

The problem with this is that then inferring T is fragile. And if we don't let it be inferred, we may as well pass T as an or-
dinary parameter. So Ceylon, unlike C#, doesn't support this.

3.6. Generic type arguments

A list of type arguments produces a new type schema from a parameterized type schema, or a new function schemafrom a
from a parameterized function schema. In the case of a type schema, this new schemais the schema of an applied type.

A typeargument list isalist of types.

TypeArgunents: "<" (Type ",")* Type ">"

A type argument may itself be an applied type, or type parameter, or may involve unions and intersections.

<Key, List<ltenr>
<String, Person?>
<String[], [{Coject*}]>

Type arguments are assigned to type parameters according to the positions they occur in the list.

Given the schema of a generic declaration, we form the new schema by type argument substitution. Each type argument is
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substituted for every appearance of the corresponding type parameter in the schema of the generic declaration, including:

e attribute types,

« method return types,

e method parameter types,

e initializer parameter types, and

e type arguments of extended classes and satisfied interfaces.

3.6.1. Type arguments and type constraints

A generic type constraint affects the type arguments that can be assigned to a type parameter:

e A type argument to atype parameter T with an upper bound must be a type which is a subtype of al upper bounds of T.

e A type argument to a type parameter T with an enumerated type bound must be a subtype of one of the enumerated
types of T, or it must be atype parameter A with an enumerated type bound where every enumerated type of Aisaso an
enumerated type of T.

A type argument list conforms to atype parameter list if, for every type parameter in thelist, either:

« thereisatype argument that satisfies the constraints of the type parameter, or

< thereisno explicit type argument but the type parameter has a default type argument, in which case the type argument
is defaulted by substituting the arguments of all type parameters that occur earlier in the list of type parameters of the
declaration into this default type argument.

There must be at |east as many type parameters as type arguments. There must be at |east as many type arguments as type
parameters without default values.

3.6.2. Applied types and and variance

If atype argument list conforms to a type parameter list, the combination of the parameterized type together with the type
argument list isitself atype, called an applied type. We also call the applied type an instantiation of the generic type.

For a generic type X, the instantiations Y and z of x represent the same type if and only if for every A in the list of type ar-
guments specified in Y and corresponding B in the list of type arguments specified in z, A is exactly the same type asB.

For a generic type X, and instantiations Y and z of X, Y is asubtype of z if and only if, for every type parameter T of x, and
corresponding arguments A specified in Y and B specified in z:

e Tisacovariant type parameter, and A is a subtype of B, or
e Tisacontravariant type parameter, and B is a subtype of A, or
e Tisaninvariant type parameter (neither covariant nor contravariant), and A and B are exactly the same type.

Note that if T is an invariant type parameter of x<T>, then a type z is a subtype of x<A> if and only if z has the principal in-
stantiation X<A>.

3.6.3. Type argument inference

When a direct invocation expression, as defined by §6.6 Invocation expressions, for a generic function or a direct instanti-
ation expression for a generic class does not explicitly specify type arguments, the type arguments are inferred from the ar-
gument expression types. The types of the argument expressions and the declared types of the corresponding parameters
determine an inferred lower bound or inferred upper bound for each type parameter.

If alist of argument expressions has types A1, A2, ... and the corresponding list of parameters has declared types
P1,P2,..., the inferred lower bound for atype parameter T of the generic declaration is the conjunction of:
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al inferred lower bounds Ai onPi for T.

Theinferred upper bound for atype parameter T of the generic declaration is the conjunction of:

all upper bounds xi explicitly declared by atype constraint on T of formgi ven T satisfies X, if any, with

all inferred upper bounds Ai on pi for T.

TODO: What should we do about upper bound constraints that involve other type parameters? Currently the typechecker
simply ignores any upper bound that involves any type parameter.

Given types A and P, we determine the inferred lower bound A on p for T according to the nature of A and P;

If Pisexactly T, theinferred lower bound Aon P for TiST abstracts A.

If Pisaunion type Q R, the lower bound A on p for T is the disunction of the lower bound A on Qfor T with the lower
bound A on Rfor T. Note: this caseis special.

If Pisan intersection type @R, the lower bound A on P for T is the conjunction of the lower bound A on Qfor T with the
lower bound A on Rfor T.

If Aisaunion type B| C, the lower bound A on P for T is the conjunction of the lower bound B on P for T with the lower
bound con P for T.

If Aisan intersection type B&C, the lower bound A on P for T is the disunction of the lower bound B on P for T with the
lower bound con P for T.

If Pisan applied type @<P1, P2, . . . > of a parameterized type Q and A is a subtype of an applied type <A1, A2, . . >, the
lower bound A on P for T isthe conjunction of all lower bounds Ai on pPi for T.

Otherwise, if Aisnot aunion or intersection, and if P is neither an applied type, a union, or an intersection, nor exactly
T, the lower bound A on P for Tis null.

Where:

the conjunction of alower bound T abstracts Awith alower bound T abstracts Bisthelower bound T abstracts
Al B!

the disjunction of alower bound T abstracts A with alower bound T abstracts Bisthelower bound T abstracts
ASB,

the conjunction or disjunction of alower bound T abstracts Awith anull lower boundisT abstracts A, and

the conjunction or disjunction of two null lower boundsis null.

Given types A and P, we determine the inferred upper bound A on P for T according to the nature of A and p:

If Pisexactly T, theinferred upper bound AonpPfor TisT satisfies A

If Pisaunion type Q R, the upper bound A on P for T is the digunction of the upper bound A on Qfor T with the upper
bound A on Rfor T. Note: this case is special.

If Pisan intersection type @R, the upper bound A on P for T is the conjunction of the upper bound A on Qfor T with the
upper bound A on Rfor T.

If Aisaunion type B| C, the upper bound A on p for T is the disunction of the upper bound B on P for T with the upper
bound con P for T.

If Aisan intersection type B&C, the upper bound A on P for T is the conjunction of the upper bound B on P for T with the
upper bound con P for T.

If Pisan applied type @<P1, P2, . . . > of a parameterized type Q and A is a subtype of an applied type <A1, A2, . . >, the
upper bound A on P for T is the conjunction of all upper bounds Ai on pPi for T.
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e Otherwisg, if Aisnot aunion or intersection, and if P is neither an applied type, a union, or an intersection, nor exactly
T, the upper bound A on P for T isnull.

Where:

< the conjunction of an upper bound T satisfies Awithan upper bound T satisfies Bisthe upper bound T satis-
fies A&B,

« thedisjunction of an upper bound T satisfies Awith an upper bound T satisfies Bisthe upper bound T sati s-
fies A B,

« theconjunction or disunction of an upper bound T sati sfi es Awithanull upper boundisT satisfies A and
 the conjunction or disunction of two null upper boundsis null.

Theinferred type argument to a covariant or invariant type parameter T of the generic declaration is:

* Not hi ng, if theinferred lower bound for T is null, or, otherwise,
e thetype A, wheretheinferred lower bound for TiST abstracts A

Theinferred type argument to a contravariant type parameter T of the generic declaration is:

e Anyt hi ng, if theinferred upper bound for T is null, or, otherwise,
e thetypeA, where the inferred upper bound for TiST satisfies A

An argument expression with no type occurring in adynani ¢ block, as defined in §5.3.12 Dynamic blocks, may cause type
argument inference to fail. When combining bounds using union, any constituent bound with no type results in a bound
with no type. When combining bounds using intersection, any constituent bound with no type is eliminated. If the resulting
inferred upper or lower bound has no type, type argument inference is impossible for the type argument, and type argu-
ments must be specified explicitly.

If the inferred type argument does not satisfy the generic type constraints on T, a compilation error results.
Consider the following invocation:

[ El enent +] prepend<El enent >( El enent head, Elenent[] sequence) { ... }
value result = prepend(null, {"hello", "world"});

The inferred type of El enent isthe union type st ri ng?.
Now consider:

cl ass Bag<out El enent>(El ement* el enents) {
shared Bag<ExtraEl ement > w t h<ExtraEl ement >( ExtraEl ement* el enents)
gi ven ExtraEl ement abstracts Element { ... }

}
Bag<String> bag = Bag("hello", "world");
val ue biggerBag = bag.with(1, 2, 5.0);

The inferred type of Ext r aEl ement iSthe union type nt eger| Fl oat | Stri ng.
Finally consider:

interface Del egate<in Value> { ... }

cl ass Consuner<in Val ue>(Del egat e<Val ue>* del egates) { ... }
Del egat e<String> del egatel = ... ;

Del egat e<Obj ect > del egate2 = ... ;

val ue consunmer = Consuner (del egatel, del egate2);

Theinferred type of val ue iS Consuner <Stri ng>.

TODO: What about upper bounds in which the type parameter itself appears (the infamous self-type problem with com
par abl e and Nurrer i ¢) or in which another type parameter appears?
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3.7. Principal instantiations and polymorphism

Inheritance interacts with type parameterization to produce subtyping relationships between instantiations of generic types.
The notion of an inherited instantiation and the notion of a principal instantation help us reason about these relationships.

Warning: this section is not for the faint of heart. Feel free to skip to Chapter 4, Declarations, unless you're really, really
interested in precisely how the compiler reasons about inheritance of generic types.

3.7.1. Inherited instantiations

For a generic type v, inheritance produces subtypes with inherited instantiations of the generic type.

< |If atype x directly extends or satisfies an instantiation v of v, then X has the inherited instantiation v of v.

« |If ageneric type X extends or satisfies an instantiation v of v, that may involve the type parameters of X, then for any
instantiation U of X, we can construct an instantiation wof Y by, for every type parameter T of X, substituting the type ar-
gument of T givenin U everywhere T occursin v, and then U has the inherited instantiation wof v.

« |f atype xisasubtype of atype Y, and Y has an inherited instantiation wof a generic type z, then x also has this inher-
ited instantiation.

3.7.2. Principal instantiation inheritance

If aclass or interface type X has the inherited instantiations v and wof some generic type, then:

« for every invariant type parameter T of v, the type argument A of T given in v and the type argument B of T given in w
must be exactly the same type, and, furthermore,

e Xisasubtype of aninstantiation u of Y such that U is a subtype of vew

Therefore, if atype X isasubtype of the instantiations v and wof some generic type v, then either:

« for some invariant type parameter T of v, the argument of A of T given in v and the argument B of T given in ware dis-
tinct types, and either A or B involves atype parameter, or

« if, for some invariant type parameter T of v, the argument of A of T given in v and the argument B of T given in ware
distinct types, and neither A nor B involve a type parameter, then the type v&wis the bottom type Not hi ng, and we say
that v and ware digoint instantiations of v, or, otherwise,

e X must be a subtype of an instantiation p of Y formed by taking each type parameter T of v, and constructing a type ar-
gument c for T from the type arguments A of T giveninv and B of T giveninw

e ifvisinvariant in T, then cisthe sametype asA and B,
« ifviscovariantin T, then CisAg&B, or

e if viscontravariantin T, then CisA| B.

The following identities result from principal instantiation inheritance, for any generic type x<T>, and for any types A and
B:

*  X<A>&X<B> is exactly equivalent to x<A&B> if X<T> is covariant in T, unless either A or B involves type parameters, and

*  X<A>&X<B> isexactly equivalent to x<A| B> if X<T> is contravariant in T, unless either A or B involves type parameters.

3.7.3. Principal instantiation of a supertype

If atype x is a subtype of some instantiation v of a generic type v, then, as aresult of the principal instantiation inheritance
restriction, we can form a unique instantiation of v that is a subtype of every instantiation of v to which X is assignable. We
call thistype the principal instantiation of v for X.
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We compute principal instantiations by making use of the identities observed above in §3.2.3 Union types, §3.2.4 Intersec-
tion types, and §3.7.2 Principal instantiation inheritance. For any generic type x:

e The principal instantiation of the union u| v of two instantiations of x, uand v, is an instantiation P of x formed by tak-
ing each type parameter T of X and constructing a type argument c for T from the type arguments A of T given in u and
B of Tgiveninv:

e ifXiscovariantinT,thencisA B,
e if xiscontravariantin T, then cis A&B, or
» if xisinvariant in T, and A and B are exactly the same type, then cisthistype.

e The principa instantiation of the intersection ugv of two instantiations of X, U and v, is an instantiation P of X formed
by taking each type parameter T of x and constructing a type argument C for T from the type arguments A of T given in
uand B of T giveninv:

« if xiscovariantin T, then CisAgB,
o if Xiscontravariant in T, then CisA| B, or
« if xisinvariant in T, and A and B are exactly the same type, then Ccisthistype.

« Finaly, the principal instantiation of a generic type x for atype Y which has one or more inherited instantiations of X is
the principal instantiation of the intersection of all the inherited instantiations of x.

Note: an intersection X<A>&x<P> of two instantiations of an invariant type, X<T> where one type argument P is a type para-
meter introduces a known hole in our type system. It is impossible to form a principal instantiation of x for this intersec-
tion type without resorting to use-site covariance, so we don't allow references to members of the intersection type.

3.7.4. Refinement

A class or interface may declare an act ual member with the same name as a member that it inherits from a supertype if
the supertype member is declared f or mal or def aul t . Then we say that the first member refines the second member, and it
must obey restrictions defined in 84.5.6 Member class refinement, 84.7.8 Method refinement, or 84.8.7 Attribute refine-
ment.

A declaration may not be annotated both f or mal and def aul t .
If adeclaration is annotated f or mal , def aul t, OF act ual then it must also be annotated shar ed.

For any class or interface X, and for every declared or inherited member of x that is not refined by some other declared or
inherited member of X, and for every other member declared or inherited by X that directly or indirectly refines a declara-
tion that the first member itself directly or indirectly refines, the principal instantiation for x of the type that declares the
first member must be a subtype of the principal instantiation for x of the type that declares the second member.

Note: arelated restriction is defined in 85.1.1 Declaration name unigueness.

3.7.5. Qualified types

A type declaration that directly occurs in the body of another type is called a nested type. If a nested type is annotated
shar ed, it may be used in a type expression outside the body in which it is declared, if and only if it occurs as a qualified

type, as specified in §3.2.7 Type expressions.

The qualified types x. uand Y. v are exactly the same types if and only if U is exactly the same type as v, and in the case
that this type is amember of a generic type z, then the principal instantiation of z for X is exactly the same type as the prin-
cipa instantiation of z for v.

A gqualified type x. Uis a subtype of a qualified typey. v if uis asubtype of v, and in the case that v is a member of a gen-
eric type z, then x is a subtype of the principal instantiation of z for v.

3.7.6. Realizations
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Given a member declared by Y, and a declaration that refines it, we can construct a refined realization of the member or
nested type:

« first determine the principal instantiation of vy for the class or interface which refines the member, and then
« substitute the type arguments in this principal instantiation into the member schema.

Given an unqualified reference, as defined in 85.1.7 Unqualified reference resolution, to a declaration, and, in the case of a
generic declaration, a list of type arguments for the type parameters of the declaration, we can construct an unqualified
realization of the declaration:

« if the declaration is a member declared by atype v, first determine the principal instantiation of v for the inheriting or
declaring class or interface, and then

e again, only if the declaration is a member declared by a type, substitute the type arguments in this principal instanti-
ation into the declaration schema, and, finaly,

» substitute the type arguments into the declaration schema.

Given a qualified reference, as defined in §5.1.8 Qualified reference resolution, with a qualifying type X, to a member or
nested type declared by v, and, in the case of a generic member or generic nested type, alist of type arguments for the type
parameters of the member, we can construct a qualified realization of the member or nested type:

 first determining the principal instantiation of v for X, and then
* substituting the type arguments in this principal instantiation into the declaration schema, and, finally,
< inthe case of ageneric member or generic nested type, substituting the type arguments into the declaration schema.

If, for any given qualified or unqualified reference, it is impossible to form the principal instantiation of the type that de-
clares the referenced declaration, due to the hole described above in §3.7.3 Principal instantiation of a supertype, itisim-
possible to form arealization, and the reference to the declaration isillegal.
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Ceylon is a statically typed language. Classes, interfaces, functions, values and aliases must be declared before use. The
declaration of a function or value must include an explicit type, or alow the type to be inferred. Static typing alows the
compiler to detect many errors, including:

e typing errorsin identifier names,

« referencesto types which do not exist or are not visible,

« references to type members which do not exist or are not visible,

e argument lists which do not match parameter lists,

e typeargument lists which do not match type parameter lists,

e operands to which an operator cannot apply,

« incompatible assignment of an expression of one type to a program element of a different type,
» evauation of avalue before it has been explicitly specified or assigned,
e assignment to anon-vari abl e value,

» failuretorefineaformal member of asupertype,

< refinement of anon-f or mal , non-def aul t member of a supertype,

e swit ch statements which do not exhaust all cases of an enumerated type.
All declarations follow a general pattern:

Annot ati ons

(keyword | Type) (TypeNane | Menber Nane) TypePar aneters? Paraneters*
CaseTypes? Ext endedType? SatisfiedTypes?

TypeConstrai nts?

(Definition | ";")

A type parameter does not need an explicit declaration of this form unless it has constraints. In the case that it does have
constraints, the constraint declaration does follow the general pattern.

This consistent pattern for declarations, together with the strict block structure of the language, makes Ceylon a highly reg-
ular language.

4.1. Compilation unit structure

A compilation unit is atext file, with the filename extension . ceyl on.

Note: it is recommended that source file names contain only characters from the ASCII character set. This minimizes
problems when transferring Ceylon source between operating systems.

There are three kinds of compilation unit:

« A regular compilation unit contains alist of toplevel type, value, or function definitions.

« A module descriptor, defined in §9.3.12 Module descriptors, contains a modul e declaration. The file must be named

nodul e. ceyl on.

* A package descriptor, defined in 89.3.11 Package descriptors, contains a package declaration. The file must be named
package. ceyl on.

Any compilation unit may begin with alist of imported types, values, and functions.

I mport* (Modul eDescriptor | PackageDescriptor | Declaration*)
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4.1.1. Toplevel and nested declarations

A toplevel declaration defines atype—a class or interface—or atype alias, or afunction or value.

Decl arati on: FunctionVal ueDecl aration | TypeDecl aration | ParaneterDecl aration
Functi onVal ueDecl arati on: FunctionDeclaration | ValueDeclaration | SetterDeclaration
TypeDecl arati on: Cl assDeclaration | ObjectDeclaration | InterfaceDeclaration | TypeAliasDeclaration

A toplevel declaration is not polymorphic and so may not be annotated f or nal , def aul t, Or act ual .

Note: in a future release of the language, we might relax this restriction and support package extension with toplevel
member refinement. This can be viewed as a regularization of the language. The practical application is that it would
make toplevel invocations and instantiations polymorphic, obviating the need for things like dependency injection.

Most toplevel declarations contain nested declarations.

Nested declarations are often mixed together with executable statements.

4.1.2. Packages

Each compilation unit belongs to exactly one package. Every toplevel declaration of the compilation unit also belongs dir-
ectly to this package. The package is identified by the location of the text file on the file system, relative to a root source

directory, as defined in 89.2 Source layout.

A package is a namespace. A full package nameis a period-separated list of all-lowercase identifiers.

Ful | PackageNane: PackageNane ("." PackageNane)*

Note: it isrecommended that package names contain only characters fromthe ASCII character set.
There is aso adefault package whose name is empty. It isimpossible to import declarations from this package.

Every package belongs to exactly one module, as specified in §9.3 Module architecture. The default package belongs to
the default module.

4.2. Imports

Code in one compilation unit may refer to a toplevel declaration in another compilation unit in the same package without
explicitly importing the declaration. It may refer to a declaration defined in a compilation unit in another package only if it
explicitly imports the declaration using thei nport statement.

Import: "inmport" Full PackageNane "{" InportEl ements "}"

For a given package, there may be at most onei nport statement per compilation unit.

Ani nport statement may import from a package if and only if:

« the package belongs to the same module as the compilation unit containing the i nport statement, as specified by §9.2
Source layout, or

* thepackageis declared shar ed in its package descriptor, and the module descriptor of the module to which the compil-
ation unit containing thei nport statement belongs, as specified by §89.2 Source layout, explicitly or implicitly imports
the modul e containing the package, as defined by §9.3.12 Module descriptors.

Each i mport statement imports one or more toplevel declarations from the given package, specifying alist of import ele-
ments.

I mport El enments: (InportElenent ",")* (InportEl ement | InportWIdcard)?

I nport El enent: | nport TypeEl enent | | nport Functi onVal ueEl enent
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An import element is areference to either:

e asingletoplevel type (aclass, interface, or alias) of the package,

» asingletoplevel function or value of the package, or

« all toplevel declarations of the package.

An import element may not refer to adeclaration that is not visible to the compilation unit, as defined by §5.1.3 Visibility.
Ani nport statement may not contain two import elements which refer to the same declaration.

Note that toplevel declarations in the package ceyl on. | anguage never need to be explicitly imported. They are implicitly
imported by every compilation unit.

An imported function or value may not hide, as defined in §5.1.4 Hidden declarations, any of the modifiers declared in
ceyl on. | anguage listed in §7.4.1 Declaration modifiers, unless the modifier itself has an aias import in the compilation
unit.

Note: an unused import resultsin a compiler warning.

4.2.1. Type imports

An import element that specifies atype name imports the toplevel type with that name from the given package.
| mport TypeEl enent: TypeAlias? TypeNarme ("{" I|nportEl ements? "}")?

A compilation unit may not import two types with the same name.
inmport java.util { Set, List, Map }

The import element may be followed by alist of nested import elements, which must specify aliases.

Note: as a special exception to the usual language rules, to support interoperation with Java, a nested import element
which references a st ati ¢ member of a Java type results in a Ceylon toplevel reference to the st ati ¢ member. In this
case, the import element may omit the explicit alias.

4.2.2. Function and value imports

An import element that specifies a function or value name imports the toplevel function or value with that name from the
given package.

I npor t Funct i onVal ueEl enent: Functi onVal ueAl i as? Menber Nane

A compilation unit may not import two methods or attributes with the same name.

import ceylon.math { sqr, sgrt, e, pi }

4.2.3. Alias imports
The optional alias clause in afully-explicit import allows resolution of cross-namespace declaration name collisions.
TypeAl i as: TypeNane "="

Functi onVal ueAl i as: Menber Nane “="

An dlias assigns a different name to the imported declaration, or to a member of the imported declaration. This name is
visible within the compilation unit in which thei nport statement occurs.

import java.util { JavaMap = Map }

inport ny.math { fib = fibonnacci Nunber }
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import java.lang {
Math { sin, cos, In=log },
System { sysprops=properties },
Char =Char acter { upper =t oUpper Case, |ower=tolLower Case, char=char Val ue }

4.2.4. Wildcard imports

Thedipsis... actsasawildcard ini nport statements. Ani nport statement that specifies a wildcard imports every top-
level declaration of the imported package, except for any declaration whose name collides with the name of atoplevel de-
claration in the compilation unit in which thei nport statement appears.

I mport Wl dcard: "

Aninport statement may specify alist of aliasimports followed by awildcard. In this case, the alias imports are imported
with the specified names, and all other toplevel declarations are imported with their declared names.

i mport ceylon.collection { ... }
import ny.math { fib = fibonnacci Number, ... }

Note: overuse of wildcard importsis discouraged.

4.2.5. Imported name

Inside a compilation unit which imports a declaration, the declaration may be referred to, as specified in §85.1.7 Unquali-
fied reference resolution and 85.1.8 Qualified reference resolution, by itsimported name:

« For animport element with an alias, the imported name isthe alias.

e For an import element with no alias, or for a wildcard import, the imported name is the original name of the declara-
tion.

An import element may not result in an imported name that is the same as the name of atoplevel declaration contained in
the compilation unit in which the import element occurs.

Two import elements occurring in the same compilation unit may not result in the same imported name.

4.3. Parameters

A function or class declaration may declare parameters. A parameter is a value or function belonging to the declaration it
parameterizes. Parameters are distinguished from other values or functions because they occur in a parameter list. A value
or function is a parameter of aclass or function if itis:

e declared inlinein a parameter list of the class or function, or
» declared normally, within the body of the class or function, but named in a parameter list of the class or function.
The following class definitions are semantically identical:

cl ass Person(shared String nanme, shared variable |nteger age=0, Address* addresses) {}

cl ass Person(nanme, age=0, addresses) {
shared String nane;
shared variabl e I nteger age
Addr ess* addr esses;

}

A parameter declaration may only occur in a parameter list, or directly, as defined by 85.1 Block structure and references,
in the body of aclass or function. A parameter declaration may not occur directly in the body of a getter or in a body of a
control structure. Nor may a parameter declaration appear as atoplevel declaration in a compilation unit.
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Par anet er Decl arati on: Val ueParaneter | Call abl eParaneter | Vari adi cParaneter

Every parameter declaration that occurs outside a parameter list must be named in the parameter list of the class or func-
tion in whose body it directly occurs, and its default argument, if any, must be specified in the parameter list.

4.3.1. Parameter lists

A parameter list isalist of parameter declarations and of names of parameters declared in the body of the class or function
to which the parameter list belongs. A parameter list may include, optionally:

e 0One or more required parameters,
e oneor more defaulted parameters (parameters with default values), and/or
e avariadic parameter.

In a parameter list, defaulted parameters, if any, must occur after required parameters, if any. The variadic parameter, if
any, must occur last.

Paraneters: "(" ( (Required ",")* ( Required | (Defaulted ",")* (Defaulted | Variadic) ) )? ")"

Every parameter list has a type, which captures the types of the individual parametersin the list, whether they are defaul-
ted, and whether the last parameter is variadic. This type is aways an subtype of Anyt hi ng[]. The type of an empty para-
meter list with no parametersis|[] .

A parameter may not be annotated f or mal , but it may be annotated def aul t .

4.3.2. Required parameters

A required parameter isavalue or callable parameter without a default argument.

A required parameter in a parameter list may be a parameter declaration, or the name of a non-variadic parameter declared
in the body of the function or class.

Requi red: Val ueParaneter | Call abl eParaneter | Menber Nane

Required parameters must occur before any other parameters in the parameter list.

4.3.3. Defaulted parameters

A defaulted parameter is avalue or callable parameter that specifies an expression that produces a default argument. A de-
faulted parameter may be either:

e anon-variadic parameter declaration, together with a default argument expression, or

< the name of a non-variadic parameter declared in the body of the function or class, together with its default argument
expression.

Def aul t ed: Val ueParaneter Specifier | Callabl eParaneter LazySpecifier | Menber Name Specifier

The = and => specifiers are used throughout the language. In a parameter list they are used to specify a default argument.
Speci fier: "=" Expression
LazySpecifier: "=>" Expression

The default argument expression may involve other parameters declared earlier in the parameter list or lists. It may not in-
volve parameters declared later in the parameter list or lists.

The default argument expression may not involve an assignment, compound assignment, increment, or decrement operat-
or.
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Defaulted parameters must occur after required parameters in the parameter list.

(Product product, Integer quantity=1, Price pricing(Product p) => p.price)

A parameter of a method or class annotated act ual may not specify a default argument. Instead, it inherits the default ar-
gument, if any, of the corresponding parameter of the method it refines.

If two parameter lists are almost identical, differing only in that the first parameter of one list is defaulted, and the first
parameter of the second list is required, and P is the the type of the second parameter list, then the type of the first paramet-
erlistis[]]|P.

Note: in Ceylon 1.0, for a function with multiple parameter lists, defaulted parameters may only occur in the first paramet-
er list. Thisrestriction will be removed.

TODO: Should we, purely for consistency, let you writef (Fl oat x) => x in a parameter list, when the callable paramet-
er isdeclared in the body of the function or class?

4.3.4. Value parameters

A value parameter is areference, as specified in §4.8.1 References, that is named or defined in a parameter list. Like any
other value declaration, it has a name, type, and, optionally, annotations.

Val uePar anet er: Annotations (Type | "dynam c") Menber Name

A value parameter may be declared using the keyword dynani ¢ in place of the parameter type. Such a parameter has no
type.

If avalue parameter x has type X, and a parameter list has type P with the principal instantiation Sequent i al <Y>, then the
type of anew parameter list formed by prepending x to the first parameter list is:

e  Tuple<XY,X P> 0r
e [1|Tuple<x Y, X P>if x isdefaulted.

The default argument expression, if any, for a callable parameter is specified using an ordinary = specifier. The type of the
default argument expression must be assignable to the declared type of the value parameter.

(String label, Anything() onCick)

({Val ue*} val ues, Conpari son(Val ue, Val ue) by)

4.3.5. Callable parameters

A callable parameter is a function, as specified in 84.7 Functions, named or defined in a parameter list. Like any other
function declaration, it has a name, type, one or more parameter lists, and, optionally, annotations.

Cal | abl eParaneter: Annotations (Type | "void") Menber Nane Paraneters+

If acallable parameter f has callable type cal | abl e<X, A>, as specified below in §4.7.1 Callable type of afunction, and a
parameter list has type P with the principal instantiation Sequent i al <y>, then the type of a new parameter list formed by
prepending f to the first parameter list is:

* Tupl e<Y| Cal | abl e<X, A>, Cal | abl e<X, A>, P>, Or
e []] Tupl e<Y| Cal | abl e<X, A>, Cal | abl e<X, A>, P> if f is defaulted.

The default argument expression, if any, for a callable parameter is specified using alazy => specifier. The type of the de-
fault argument expression must be assignabl e to the return type of the callable parameter.

(String label, void onClick())

({Val ue*} val ues, Conparison by(Value x, Value y))

Project Ceylon: Final release draft (1.0) 40



Declarations

4.3.6. Variadic parameters

A variadic parameter is avaue parameter that accepts multiple arguments:

e A variadic parameter declared T* accepts zero or more arguments of type T, and hastype[ T*] .
e A variadic parameter declared T+ accepts one or more arguments of type T, and hastype [ T+] .

Vari adi cType: Uni onType ("*" | "+")
Vari adi cParanmet er: Annotations Vari adi cType Menber Nane

A variadic parameter in a parameter list may be a variadic parameter declaration, or the name of a variadic parameter de-
clared in the body of the function or class.

Vari adi c: Vari adi cParaneter | Menber Name

The variadic parameter must be the last parameter in a parameter list. A variadic parameter may not have a default argu-
ment. A variadic parameter declared T+ may not occur in a parameter list with defaulted parameters.

(Name nane, Organization? org=null, Address* addresses)
(Fl oat + fl oats)

The type of a parameter list containing just a variadic parameter of type T+ is[ T*] The type of a parameter list containing
just avariadic parameter of type T+ iS[ T+] .

Note: in Ceylon 1.0, for a function with multiple parameter lists, a variadic parameters may only occur in the first para-
meter list. Thisrestriction will be removed.

4.4. Interfaces

An interface is a type schema, together with implementation details for some members of the type. Interfaces may not be
directly instantiated.

I nterfaceDecl aration: Annotations |nterfaceHeader (InterfaceBody | TypeSpecifier ";")

An interface declaration may optionally specify alist of type parameters. An interface declaration may also have alist of
interfacesis satisfies, a self type or an enumerated list of cases, and/or alist of type constraints.

InterfaceHeader: "interface" TypeName TypeParaneters? |nterfacel nheritance TypeConstraints?
Interfacel nheritance: CaseTypes? SatisfiedTypes?

To obtain a concrete instance of an interface, it is necessary to define and instantiate a class that satisfies the interface, or
define an anonymous class that satisfies the interface.

The body of an interface contains:

* member (method, attribute, and member class) declarations, and
* nested interface, type alias, and abst ract class declarations.

InterfaceBody: "{" Declaration* "}"

Unlike the body of a class, method, or attribute, the body of an interface is not executable, and does not directly contain
procedural code.

shared interface Conparabl e<Qther> {
shared formal Conparison conpare(Qher other);
shared Bool ean | arger Than(Q her ot her) => conpare(other) ==l arger;
shared Bool ean smal | er Than(Q her ot her) => conpare(other)==snaller;
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}

An interface may declare f or mal methods, attributes, and member classes, and concrete methods, getters, setters, and
member classes. A reference declaration, as defined in §4.8.1 References, or anonymous class declaration, as defined in
84.5.7 Anonymous classes, may not directly occur in the body of an interface.

A non-abstract nested class declaration is called a member class of the interface. A nested interface or abstract class
declaration is not part of the schema of the interface type, and is therefore not considered a member of the interface.

4.4.1. Interface bodies

The body of an interface consists purely of declarations. The following constructs may not occur sequentially in the body
of aninterface:

« astatement or control structure,
* areference declaration,
+ aforward-declared method or attribute declaration, or

e anobj ect declaration.

Within an interface body, a super reference is any occurrence of the expression super , unless it also occurs in the body of
anested class or interface declaration. A statement or declaration contained in the interface body may not:

e pass a super reference as an argument of an instantiation, method invocation, or ext ends clause expression or as the
value of avalue assignment or specification,

e use a super reference as an operand of any operator except the member selection operator, or the of operator as spe-

cifiedin §6.3.3 super,

< return asuper reference, or

« narrow the type of a super reference usingtheif (is ...) construct or case (is ...).

4.4.2. Interface inheritance

An interface may satisfy any number of other interfaces.

shared interface List<El enent>
sati sfies Collection<El enment> & Correspondence<l| nt eger, El enent >
gi ven El enent satisfies Object {

}

Every type listed in the sat i sfi es clause must be an interface. An interface may not satisfy the same interface twice (not
even with distinct type arguments).

Note: this second restriction is not strictly necessary. In fact, sati sfies Li st <One>&Li st <Two> means the same thing as
satisfies List<One&Two>, and the compiler already needs to be able to figure that out when it comes to multiple instan-
tiations of the same interface inherited indirectly. Still, the restriction seems harmless enough.

The interface is a subtype of every type listed in the sati sfi es clause. The interface is aso a subtype of the type j ect
defined in ceyl on. | anguage.

An interface inherits all members (methods, attributes and member types) of every supertype. That is, every member of
every supertype of the interface is also a member of the interface. Furthermore, the interface inherits all nested types
(interfaces and abst r act classes) of every supertype.

The schema of the inherited membersis formed by substituting type arguments specified in thesat i sfi es clause.

An interface that satisfies a nested interface must be a member of the type that declares the nested interface or of a subtype
of the type that declares the nested interface.
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A user-defined interface may not satisfy the interface Cal | abl e defined in ceyl on. | anguage.

4.4.3. Interfaces with enumerated cases

An interface declaration may enumerate a list of cases of the interface.

shared interface Node<El enent>
of Root <El ement> | Branch<El ement> | Leaf<Elenment> { ... }

The cases may be interfaces, classes, or toplevel anonymous classes. A case may be an abst ract class. Each case must be
a subtype of the interface type. An interface may not be a case of itself. An interface declaration may not list the same case
twice.

If an interface has an of clause, then every interface or class which is a subtype of the interface must be subtype of exactly
one of the enumerated cases.

4.4.4. Interface aliases

An interface declaration which specifies a reference to another interface type defines an interface alias of the specified in-
terface type.

TypeSpecifier: "=>" Type

The specified type must be an interface type, that is, areference to an interface with no type parameters, or an instantiation
of a generic interface. An interface alias simply assigns an aternative name to the original interface type. A reference to
the alias may occur anywhere areference to an interface may occur.

shared interface Peopl eByNane => Map<Stri ng, Per son>;
i nt erface Conpare<Val ue> => Conpari son(Val ue, Val ue) ;

If the aliased interface is a parameterized type, the aliased type must explicitly specify type arguments.
A class or interface may satisfy an interface alias, in which case, the class or interface inherits the aliased interface type.

Interface aliases are not reified types. The metamodel reference for an interface aias type—for example,
Peopl eBy Namre—returns the metamodel object for the aliased interface—in this case, Map<St ri ng, Per son>, as specified in
§8.1.2 Type argument reification.

4.5. Classes
A classisastateful, instantiable type. It is atype schema, together with implementation details of the members of the type.

Cl assDecl arati on: Annotations C assHeader (C assBody | C assSpecifier ";")

An ordinary class declaration specifies a list of parameters required to instantiate the type, and, optionaly a list of type
parameters. A class declaration may have a superclass, a list of interfaces it satisfies, a self type or an enumerated list of
cases, and/or alist of type constraints.

Cl assHeader: "cl ass" TypeNanme TypeParaneters? Paraneters C asslnheritance TypeConstraints?
Cl assl nheritance: CaseTypes? ExtendedType? Sati sfiedTypes?

To obtain an instance of aclass, it is necessary to instantiate the class, or a subclass of the class.

The body of aclass contains:

* member (method, attribute, and member class) declarations,

* nested interface, type alias, and abst ract class declarations, and
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¢ instanceinitialization code.

Cl assBody: "{" (Declaration | Statenent)* "}"

The body of aclass may contain executable code.

shared class Counter(lnteger initial Count=0) {
variable Integer n = initial Count;
print("Initial count: ~"n *");
shared | nteger count => n;
shared void increment() {

n++;
print("Count: “~“n ");

A non-abstract nested class declaration is called a member class of the class. A nested interface or abst ract class de-
claration is not part of the schema of the class type, and is therefore not considered a member of the class.

Ceylon classes do not have seperate nested constructor declarations. Instead, the body of the class declaresinitializer para-
meters. An initializer parameter may be used anywhere in the class body, including in method and attribute definitions.

shared cl ass Key(Lock | ock) {
shared void | ock() {
| ock. engage(this);
print("Locked.");
shared void unlock() {
| ock. di sengage(this);
print ("Unl ocked.");

shared Bool ean | ocked => | ock. engaged

Aninitializer parameter may be shar ed.

shared cl ass Point(shared Float x, shared Float y) { ... }

shared cl ass Counter(count=0) {
shared variabl e I nteger count;
shared void increnment() => count++

4.5.1. Callable type of a class

The callable type of a class captures the type and parameter types of the class. The callable type is cal | abl e<T, P>, where
Tisthe classand P isthe type of the initializer parameter list of the class.

Anabstract classisnot callable, except from the ext ends clause of a subclass, or the class specifier of aclass alias.

4.5.2. Initializer section

Theinitial part of the body of aclassis caled the initializer of the class and contains a mix of declarations, statements and
control structures. The initializer is executed every time the classis instantiated.

A classinitializer is responsible for initializing the state of the new instance of the class, before a reference to the new in-
stance is available to clients.

shared abstract class Point() {
shared formal Float x;
shared formal Float vy;

shared cl ass Di agonal Poi nt (Fl oat di st ance)
extends Point() {
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value d = distance / 270.5;
X => d;
y =>d;

"must have correct distance fromorigin"
assert (x"2 + y”"2 == distance”2);

shared object origin
extends Point() {
x => 0.0;
y => 0.0;
}

Within aclassinitializer, a self reference to the instance being initialized is:

e any occurrence of the expression t hi s or super, unless it also occurs in the body of a nested class or interface declara-
tion, or

e any occurrence of the expression out er in the body of a class or interface declaration immediately contained by the
class.

A statement or declaration contained in the initializer of a class may not evaluate an attribute, invoke a method, or instanti-
ate a member class upon the instance being initialized, including upon a self reference to the instance being initialized, if
the attribute, method, or member class:

e occurslater in the body of the class,
e isannotated f or mal Or defaul t, Or
< isinherited from an interface or superclass, and is not refined by a declaration occurring earlier in the body of the class.

A member class contained in the initializer of a class may not ext end a member or nested class of an interface or super-
class of the class.

Furthermore, a statement or declaration contained in the initializer of a class may not:

e pass asdf reference to the instance being initialized as an argument of an instantiation, method invocation, or ext ends
clause expression or as the value of avalue assignment or specification,

« use asdf reference to the instance being initialized as an operand of any operator except the member selection operat-
or, or the of operator,

« return aself reference to the instance being initialized, or

e atempt to narrow the type of a self reference to the instance being initialized using theif (is ...) construct or case
(is ...).

Nor may the class pass a self reference to the instance being initialized as an argument of its own ext ends clause expres-
sion, if any.

As aspecial exception to these rules, a statement contained in an initializer may assign a self-reference to the instance be-
ing initialized to areference annotated | at e.

For example, the following code fragments are not legal:

class Gaph() {
OpenLi st <Node> nodes = ArraylLi st <Node>();
cl ass Node() {
nodes. add(t hi s); //conpiler error (this reference in initializer)
}

class Gaph() {
cl ass Node() {}
Node creat eNode() {
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Node node = Node();
nodes. add( node) ; //compiler error (forward reference in initializer)
return node;

}
OpenLi st <Node> nodes = ArraylLi st <Node>();
}

But this code fragment islegal:

class Graph() {
OpenLi st <Node> nodes = ArrayLi st <Node>();
Node creat eNode() {
Node node = Node();
nodes. add( node) ;
return node;

E:Iass Node() {}

4.5.3. Declaration section

The remainder of the body of the class consists purely of declarations, similar to the body of an interface. The following
constructs may not occur sequentially in the declaration section:

* astatement or control structure,

» areference declaration,

« aforward-declared method or attribute declaration not annotated | at e,

e anobj ect declaration with anon-empty initializer section, or

e anobj ect declaration that directly extends a class other than tvj ect or Basi ¢ inceyl on. | anguage.

However, the declarations in this second section may freely uset hi s and super , and may invoke any method, evaluate any
attribute, or instantiate any member class of the class or its superclasses.

Within the declaration section of a class body, a super reference is any occurrence of the expression super, unless it also
occurs in the body of a nested class or interface declaration. A statement or declaration contained in the declaration section
of aclass body may not:

e pass a super reference as an argument of an instantiation, method invocation, or ext ends clause expression or as the
value of avalue assignment or specification,

* use a super reference as an operand of any operator except the member selection operator, or the of operator as spe-

cified in §6.3.3 super,
» return asuper reference, or

< narrow the type of a super referenceusingtheif (is ...) construct or case (is ...).

4.5.4. Class inheritance

A class may extend another class.

shared cl ass Custoner(Nanme name, Organization? org = null)
ext ends Person(nanme, org) {

}

The class is a subtype of the type specified by the ext ends clause. If a class does not explicitly specify a superclass using
ext ends, its superclassisthe class Basi ¢ defined in ceyl on. | anguage.

A class may satisfy any number of interfaces.

cl ass Token()
extends Datetime()
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sati sfi es Conparabl e<Token> & ldentifier {

}

The class is a subtype of every type listed in the sati sfies clause. A class may not satisfy the same interface twice (not
even with distinct type arguments).

A class inherits all members (methods, attributes, and member types) of every supertype. That is, every member of every
supertype of the class is also a member of the class. Furthermore, the class inherits all nested types (interfaces and ab-
stract classes) of every supertype.

Unlessthe classis declared abst ract or f or mal , the class:

* must declare or inherit a member that refines each f or mal member of every interface it satisfies directly or indirectly,
and

e must declare or inherit a member that refines each f or mal member of its superclass.

The schema of the inherited members is formed by substituting type arguments specified in the ext ends or sati sfi es
clause.

A subclass must pass values to each superclassinitialization parameter in the ext ends clause.

shared cl ass Speci al Key1()
extends Key( Special Lock() ) {

shared cl ass Speci al Key2(Lock | ock)
extends Key(lock) {

}

A subclass of a nested class must be a member of the type that declares the nested class or of a subtype of the type that de-
clares the nested class. A class that satisfies a nested interface must be a member of the type that declares the nested inter-
face or of a subtype of the type that declares the nested interface.

A user-defined class may not satisfy the interface cal | abl e defined in ceyl on. | anguage.

4.5.5. Abstract, final, formal, and default classes
A toplevel or nested class may be annotated abst ract and iscalled an abstract class.
A toplevel or nested class may be annotated fi nal andiscalledanfinal class.

If a class annotated shar ed is a member of a containing class or interface, then the class may be annotated f or mal and is
caled af or mal member class, or, sometimes, an abstract member class.

Anabstract classor f ormal member class may havef or mal members.
Anabstract classmay not be instantiated.

A formal member class may be instantiated.

A classwhichis not annotated f or mal Or abst ract iscalled aconcrete class.
A concrete class may not havef or mal members.

A class annotated f i nal must be a concrete class.

A class annotated f i nal may not have def aul t members.

If a concrete class annotated shar ed is a member of a containing class or interface, then the class may be annotated de-
fault andiscalled adef aul t member class.

A toplevel class may not be annotated f or mal Or def aul t .
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An un-shar ed class may not be annotated f or mal Or defaul t.

Note: a formal member class would be a reasonably syntax for declaring virtual types. We think we don't need virtual
types because they don't offer much that type parameters don't already provide. For example:

shared formal class Buffer(Character...)

sati sfi es Sequence<Character>;

4 .5.6. Member class refinement

Member class refinement is a unique feature of Ceylon, akin to the "factory method" pattern of many other languages.

¢ A member class annotated f or mal or def aul t may be refined by any class or interface which is a subtype of the class
or interface which declares the member class.

« A member class annotated f or mal must be refined by every concrete class which is a subtype of the class or interface
that declares the member class, unless the class inherits a concrete member class from a superclass that refines the
for mal member class.

A member class of a subtype refines a member class of a supertype if the member class of the supertype is shar ed and the
two classes have the same name. The first classis called the refining class, and the second classiis called the refined class.

Then, given the refined realization of the class it refines, as defined in §3.7.6 Realizations, and, after substituting the type
parameters of the refined class for the type parameters of the refining class in the schema of the refining class, the refining
class must:

« have the same number of type parameters as the refined schema, and for each type parameter the intersection of its up-
per bounds must be a supertype of the intersection of the upper bounds of the corresponding type parameter of the real-
ization,

* have aparameter list with the same signature as the realization, and
e directly or indirectly extend the class it refines.

Furthermore:

» therefining class must be annotated act ual , and

» therefined class must be annotated f or mal Of def aul t .

If amember classis annotated act ual , it must refine some member class of a supertype.

A member class may not, directly or indirectly, refine two different member classes not themselves annotated act ual .

Then instantiation of the member class is polymorphic, and the actual subtype instantiated depends upon the concrete type
of the containing class instance.

shared abstract class Reader() {
shared formal class Buffer(Character* chars)
satisfies Character[] {}

shared class Fil eReader(File file)
ext ends Reader () {
shared actual class Buffer(Character* chars)
ext ends Reader.Buffer(chars) {

}

All of the above rules apply equally to member classes which are aliases.

shared abstract class Reader() {
shared formal class Buffer(Character* chars) => AbstractBuffer(*chars);
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shared class Fil eReader(File file)
ext ends Reader () {
shared actual class Buffer(Character* chars) => FileBuffer(*chars);

4.5.7. Anonymous classes

An obj ect declaration makesit possible to define a class, instantiate the class, and declare an attribute referring to the res-
ulting class instance in a single declaration.

Obj ect Decl arati on: Annotati ons Obj ect Header Cl assBody

Anobj ect hasaninitial lowercase identifier. An obj ect declaration does not specify parameters or type parameters.

bj ect Header: "object" Menber Nane bj ectlnheritance
oj ect | nheritance: ExtendedType? SatisfiedTypes?

An obj ect declaration specifies the name of the attribute and the schema, supertypes, and implementation of the class. It
does not specify atype name. Instead, the type has a name assigned internally by the compiler that is not available at com-
pilation time.

An obj ect class:

e isimplicitly final ,

e may not be extended by another class,

* may not beabstract orfornmal , and

e may not declare def aul t members.

If the obj ect isannotated shar ed, the classisshar ed.

This class never appears in types inferred by local declaration type inference or generic type argument inference. Instead,
occurrences of the class are replaced with the intersection of the extended type with all satisfied types.

An obj ect attribute;

e isnon-vari abl e, and
* may not be refined or declared def aul t .

If the obj ect isannotated shar ed, the attribute is shar ed. If the obj ect isannotated act ual , it refines an attribute of a su-
pertype.

The following declaration:
shared object red extends Col or (' FFO000') {
string => "Red";
}
Is exactly equivalent to:

shared final class \Ired() extends Col or (' FFO000') {
string => "Red";
}

shared \lred red = \lred();

Where\ | red is aname generated by the compiler. The algorithm for generating this name is not specified here.
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Note that a member of an anonymous class that is not annotated act ual may only be accessed from within the body of the
anonymous class or by directly invoking the obj ect attribute.

shared object sqgl {
shared String escape(String string) { ... }
}

String escapedSearchString = sql.escape(searchString);

4.5.8. Classes with enumerated cases

A class declaration may enumerate alist of cases of the class.

shared abstract class Bool ean()
of true | false {}

shared object true extends Boolean() { string => "true"; }
shared object fal se extends Boolean() { string => "false"; }

shared abstract class Node<El ement>(Stri ng nane)
of Branch<El ement> | Leaf<Elenment> { ... }

shared cl ass Leaf <El enent>(String name, El ement el ement)
ext ends Node<El enent >(nane) { ... }

shared cl ass Branch<El ement>(Stri ng nanme, Node<El enent> | eft, Node<El enent> right)
ext ends Node<El ement >(nanme) { ... }

The cases may be classes or toplevel anonymous classes. A case may be an abst ract class. Each case must be a subclass
of the class. A class may not be a case of itself. A class declaration may not list the same case twice.

If aclass has an of clause, then every class that directly extends the class must be of one of the enumerated cases of the
class.

A non-abst ract class may not have an of clause.
Note: in a future release of the language, we will introduce an abbreviated syntax like:

shared abstract class Bool ean(shared actual String string)
of object true ("true") |
object false ("false") {}

4.5.9. Class aliases

A class declaration which specifies areference to another class type defines a class alias of the specified class type.

Cl assSpecifier: "=>" ("super" ".")? TypeNaneW thArguments Positional Argunments

The specified type must be a class type, that is, a reference to a class with no type parameters, or an instantiation of a gen-
eric class. A class alias simply assigns an aternative name to the original class type. A reference to the alias may occur
anywhere areference to a class may occur.

shared cl ass Peopl e(Person* people) => Arrayli st <Person>(*peopl e);
cl ass Naned<Val ue>(String nane, Value val) => Entry<String, Val ue>(nane, val);

Arguments to the initializer parameters of the aliased class must be specified.
If the aliased classis a parameterized type, the aliased type must explicitly specify type arguments.
The type arguments may not be inferred from the initializer arguments.

Note: currently the compiler imposes a restriction that the callable type of the aliased class must be assignable to the
callable type of the class alias. This restriction will be removed in future.
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If atoplevel class alias or un-shar ed class alias aliases an abstract class, the alias must be annotated abst ract , and it
may not be directly instantiated.

If ashared class alias nested inside the body of a class or interface aliases an abst ract class, the alias must be annotated
abstract or formal . If it is annotated f or mal , it is considered a member class of the containing class or interface. If it is
annotated abst r act , it is considered an abstract nested class of the containing class or interface.

A class or interface may extend aclass dias, in which case, the class inherits the aliased class type.

Class aliases are not reified types. The metamodel reference for a class alias type—for example, Peopl e—returns the
metamodel object for the aliased class—in this case, ArrayLi st <Per son>, as specified in §8.1.2 Type argument reification.

4.6. Type aliases

A type alias declaration assigns a name to an arbitrary type expression, usually involving a union and/or intersection of
types.

TypeAl i asDecl arati on: Annotati ons AliasHeader TypeSpecifier
Al'i asHeader: "alias" TypeNane TypeParaneters? TypeConstraints?

The specified type may be any kind of type. A reference to the alias may be used anywhere a union or intersection type
may be used. The alias may not appear in an ext ends Or sat i sfi es clause. The alias may not be instantiated.

shared alias Number => I|nteger| Fl oat| Deci mal | Whol e;
al ias ListLike<Val ue> => Li st <Val ue>| Map<I nt eger, Val ue>;

al i as Nurmber ed<Num Val ue> gi ven Num sati sfies O di nal <Nun»
=> Correspondence<Num Val ue>;

Note: class, interface, and type aliases use a "fat arrow" lazy specifier => instead of = because the type parameters de-
clared on the | eft of the specifier are in scope on the right of the specifier. An aliasisin general a type constructor.

A class or interface may not extend or satisfy atype alias.

Type aliases are not reified types. The metamodel reference for a type alias type—for example, Nunber —returns the
metamodel object for the aliased type—in this case, | nt eger | Fl oat | Deci mal | Whol e, as specified in §8.1.2 Type argument
reification.

4.7. Functions

A function is a callable block of code. A function may have parameters and may return avalue. If afunction belongs to a
type, it is called a method.

Functi onDecl arati on: Annotati ons FunctionHeader (Block | LazySpecifier? ";")

All function declarations specify the function name, one or more parameter lists, and, optionaly, alist of type parameters.
A function declaration may specify atype, called the return type, to which the values the method returns are assignable, or
it may specify that the function is avoi d function—a function which does not return a useful value, and only useful for its
effect. A generic function declaration may have alist of type constraints.

Functi onHeader: (Type | "function" | "dynam c" | "void") MenberNane TypePar aneters? Paraneters+ TypeConstraints?
A function may be declared using the keyword dynani c in place of its return type. Such afunction has no return type.

A function implementation may be specified using either:

* ablock of code, or

* alazy specifier.
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If afunction is a parameter, it must not specify any implementation.
The return type of avoi d function is considered to be Anyt hi ng defined in ceyl on. | anguage.

Note: a voi d function with a concrete implementation returns the value nul | . However, since a voi d function may be a
reference to a non-voi d function, or a method refined by a non-voi d function, this behavior can not be depended upon and
is not implied by the semantics of voi d.

4.7.1. Callable type of a function

The callable type of afunction captures the return type and parameter types of the function.

* Thecallable type of afunction with a single parameter list is cal | abl e<R, P> where R is the return type of the method,
or Anyt hi ng if the function isvoi d, and P is the type of the parameter list.

* Thecalabletype of afunction with multiple parameter listsis cal | abl e<0, P>, where Ois the callable type of a method
produced by eliminating the first parameter list, and P is the type of the first parameter list of the function.

Note: the identification of voi d with Aanyt hi ng instead of Nul | or some other unit type will probably be contraversial. This
approach allows a non-voi d method to refine a voi d method or a non-voi d function to be assigned to a voi d functional
parameter. Thus, we avoid rejecting perfectly well-typed code.

4.7.2. Functions with blocks

A function implementation may be a block.

« If thefunction is declared voi d, the block may not contain ar et ur n directive that specifies an expression.

« Otherwise, every conditional execution path of the block must end in areturn directive that specifies an expression
assignable to the return type of the function, or in at hr ow directive, as specified in §5.2.4 Definite return.

shared Integer add(Integer x, Integer y) {
return x +vy;
}

shared void printAll (Object* objects) {
for (obj in objects) {
print(obj);
}

shared void addEntry(Key->ltementry) {
map. put (entry. key,entry.iteny;

shared Set <El ement > si ngl et on<El enent >( El enment el enent)
gi ven El enent satisfies Conparabl e<El ement > {
return TreeSet { el enent };

4.7.3. Functions with specifiers

Alternatively, a function implementation may be alazy specifier, that is, an expression specified using =>. The type of the
specified expression must be assignable to the return type of the function. In the case of a function declared voi d, the ex-
pression must be alegal statement.

shared Integer add(Integer x, Integer y) => x + y;

shared void addEntry(Key->ltementry) => map.put(entry.key,entry.iten);

shared Set <El ement > si ngl et on<El enent >( El enent el enent)
gi ven El ement satisfies Conparabl e<El enent >
=> TreeSet { elenent };
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4.7.4. Function return type inference

A non-voi d, un-shar ed function with a block or lazy specifier may be declared using the keyword f uncti on in place of
the explicit return type declaration. Then the function return type isinferred:

« if the function implementation is a lazy specifier, then the return type of the function is the type of the specified ex-
pression,

« if the function implementation is a block, and the function contains no ret ur n directive, then the return type of the
method is Bot t om(this is the case where the method always terminatesin at hr ow directive), or,

» otherwise, the return type of the function is the union of al returned expression types of r et ur n directives of the meth-
od body.

Thisfunction has inferred return type nt eger .

function add(Integer x, Integer y) => x + y;

Thisfunction has inferred return type Fl oat | I nt eger .

function unit(Bool ean floating) {
if (floating) {
return 1.0;
}

el se {
return 1;
}

}

This function has inferred return type Bot t om

function die() {
t hr ow;
}

4.7.5. Forward declaration of functions

The declaration of afunction may be separated from the specification of its implementation. If a function declaration does
not have alazy specifier, or ablock, and is not annotated f or mal , and is not a parameter, it is a forward-declared function.

A forward-declared function may later be specified using a specification statement, as defined in §5.2.3 Specification
statements. The specification statement for a forward-declared function may be:

« alazy specification statement with parameter lists of exactly the same types as the function, and a specified expression
assignable to the declared type of the function, or

< anordinary specification statement with a specified expression assignable to the callable type of the function.

Conparison order(String x, String y);
if (reverseOrder) {
order(String x, String y) => y<=>x;

el se {
order(String x, String y) => x<=>y;

Conpari son format (Il nteger x);
switch (base)
case (decimal) {
format = (Integer i) =>i.string;

case (binary) {
format = formatBin;

case (hexadeci mal) {
format = format Hex;
}
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Every forward-declared function must explicitly specify atype. It may not be declared using the keyword f unct i on.

A toplevel function may not be forward-declared. A method of an interface may not be forward-declared.

If a shared method is forward-declared, its implementation must be definitely specified by al conditional paths in the
classinitializer.

4.7.6. Functions with multiple parameter lists

A function may declare multiple lists of parameters. A function with more than one parameter list returns instances of
Cal | abl e in ceyl on. | anguage when invoked. Every function with multiple parameter lists is exactly equivalent to a func-
tion with a single parameter list that returns an anonymous function.

This function declaration:

Bool ean great er Than<El enent >( El enent val ) (El enent el enent)
gi ven El enent satisfies Conparabl e<El ement> =>
el enment >val ;

is equivalent to the following:

Bool ean( El enent) great er Than<El enent >( El enent val )
gi ven El ement satisfies Conparabl e<El enent > =>
(El enent el ement) => el ement >val ;

For afunction with n parameter lists, there are n- 1 inferred anonymous functions. Thei th inferred function:

* hasacallabletype formed by eliminating thefirsti parameter lists of the original declared function,
* hasthei +1th parameter list of the original declared function, and

« ifi<n, returnsthei +1th inferred function, or

» otherwise, if i ==n, has the implementation of the original declared function.

Then the original function returns the first inferred anonymous function.

This method declaration:

function full Nane(String firstNanme)(String m ddl eNane) (String | ast Nane)
=> firstNanme + " " + mddleNane + " " + | ast Naneg;

Is equivalent to:

function full Name(String firstNane) =>
(String m ddl eNane) =>
(String | ast Name) =>
firstNane + " " + middleNane + " " + | ast Naneg;

4.7.7. Formal and default methods

If afunction declaration does not have alazy specifier, or ablock, and is annotated shar ed, and is a method of either:

e aninterface, or
e aclassannotated abst ract Of for mal ,
then the function declaration may be annotated f or mal , and is called af or mal method, or, sometimes, an abstract method.

shared formal |ten? get(Key key);

A method which is not annotated f or nal is called a concrete method.

If aconcrete method is annotated shar ed, and is a member of a class or interface, then it may be annotated def aul t and is
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caled adef aul t method.

shared default void witeLine(String line) {
wite(line);
wite("\n");

}

A method annotated f or mal may not specify an implementation (alazy specifier, or a block).

A method annotated def aul t may specify an implementation (alazy specifier, or ablock), or may be forward-declared.
Every f or mal method must explicitly specify atype. It may not be declared using the keyword f unct i on.

A toplevel method may not be annotated f or mal Or def aul t .

An un-shar ed method may not be annotated f or mal Or def aul t .

4.7.8. Method refinement

Methods may be refined, just like in other object-oriented languages.

* A class or interface may refine any f or mal or def aul t method it inherits, unless it inherits a non-f or mal NoN-def aul t
method that refines the method.

e A concrete class must refine every for mal method it inherits, unless it inherits a non-f or mal method that refines the
method.

A method of a subtype refines a method of a supertype if the method of the supertype is shar ed and the two methods have
the same name. The first method is called the refining method, and the second method is called the refined method.

Then, given the refined realization of the method it refines, as defined in §3.7.6 Realizations, and, after substituting the
type parameters of the refined method for the type parameters of the refining method in the schema of the refining method,
the refining method must:

« have the same number of type parameters as the refined schema, and for each type parameter the intersection of its up-
per bounds must be a supertype of the intersection of the upper bounds of the corresponding type parameter of the real-
ization,

* have the same number of parameter lists, with the same signatures, as the realization, and

< haveareturn typethat is assignabl e to the return type of the realization, or

« if it has no return type, the refined method must also have no return type.

Note: in a future release of the language, we would like to support contravariant refinement of method parameter types.

Furthermore:

e therefining method must be annotated act ual , and

 the refined method must be annotated f or mal or def aul t .

If amethod is annotated act ual , it must refine some method defined by a supertype.

A method may not, directly or indirectly, refine two different methods not themselves annotated act ual .

Then invocation of the method is polymorphic, and the actual method invoked depends upon the concrete type of the class
instance.

shared abstract class Abstract SquareRooter () {
shared formal Float squareRoot (Fl oat x);
}

cl ass Concr et eSquar eRoot er ()
ext ends Abstract SquareRooter () {
shared actual Float squareRoot (Fl oat x) => x”0.5;
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}

Alternatively, a subtype may refine a method using a specification statement, as defined in 85.2.3 Specification statements.
The specification statement must satisfy the requirements of 84.7.5 Forward declaration of functions above for specifica-
tion of aforward-declared function.

cl ass Concr et eSquar eRoot er ()
ext ends Abstract Squar eRooter () {
squar eRoot (Fl oat x) => x”0.5;

4.8. Values

There are two basic kinds of value:

« A reference defines state. It has a persistent value, determined at the moment it is specified or assigned.

e A getter defines how avalueis evaluated. It is defined using a block or lazy specifier, which is executed every time the
valueisevaluated. A getter may have a matching setter.

If avalue belongsto atype, itiscalled an attribute.
Val ueDecl arati on: Annotations Val ueHeader (Block | (Specifier | LazySpecifier)? ";")
All value declarations specify the value name. A value declaration may specify atype.

Val ueHeader: (Type | "value" | "dynam c") Menber Name

A value may be declared using the keyword dynani ¢ in place of itstype. Such avalue has no type.

Note: syntactically a value declaration looks like a function declaration with zero parameter lists. It is often helpful, in
thinking about the syntax and semantics of Ceylon, to take the perspective that a value is a function with zero parameter
lists, or, alternatively, that a function is a value of type cal | abl e.

A value may be variable, in which case it may be freely assigned using the assignment and compound assignment operat-
orsdefined in 86.8 Operators. Thisisthe case for areference annotated vari abl e, or for a getter with a matching setter.

4.8.1. References
The lifecycle and scope of the persistent value of a reference depends upon where the reference declaration occurs:

« A toplevel reference represents global state associated with the lifecyle of a module, as defined by §8.2.10 Initializa-
tion of toplevel references.

« A reference declared directly inside the body of a class represents a persistent value associated with every instance of
the class, as defined by §8.2.3 Current instance of a class or interface. Repeated evaluation of the attribute of a particu-
lar instance of the class produces the same result until the attribute of the instance is assigned a new value.

< A reference declared inside a block represents state associated with a frame, that is, with a particular execution of the
containing block of code, as defined in §8.2.4 Current frame of a block.

The persistent value of a reference may be specified or initialized as part of the declaration of the reference, or via a later
specification statement, as defined in §5.2.3 Specification statements, or assignment expression, as defined in §6.8 Operat-
ors, or, if it is a parameter, by an argument to an invocation expression, as defined in 86.6 Invocation expressions.

A reference annotated vari abl e has a persistent value that can be assigned multiple times. A reference not annotated
vari abl e has a persistent value that can be specified exactly once and not subsequently modified.

vari abl e I nteger count = 0;

shared Decimal pi = calcul atePi();
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shared Integer[] evenDigits = [0,2,4,6,8];

A reference declaration may have a specifier which specifies its persistent value or, in the case of a variable reference, its
initial persistent value. The type of the specified expression must be assignable to the type of the reference.

If the specified expression has no type, and the declaration occurs within a dynani ¢ block, then the specification is not
type-checked at compile time.

If areference isa parameter, it must not specify a persistent value.

A reference belonging to a class may be annotated | at e, in which case the initializer of the classis not required to initial-
ize its persistent value. Furthermore, a self-reference to an instance being initialized may be assigned to the reference. If
the reference is evaluated before it isinitialized, or before its value has been completely initialized, an exception is thrown.

If a class declares or inherits a vari abl e reference, it must (directly or indirectly) extend the class Basi ¢ defined in
ceyl on. | anguage.

4.8.2. Getters

A getter implementation may be a block.

shared Float total {
variabl e Fl oat sum = 0.0;
for (li in lineltens) {
sum += |i.anmpunt;

return sum

}

Every conditional execution path of the block must end in ar et ur n directive that specifies an expression assignable to the
type of the value, or in at hr ow directive, as specified in §5.2.4 Definite return.

Alternatively, a getter implementation may be a lazy specifier, that is, an expression specified using =>. The type of the
specified expression must be assignable to the type of the value.

Nanme nanme => Nane(firstNane, initial, |astNane);

4.8.3. Setters
A setter defines how the value of a getter is assigned.

SetterDecl aration: "assign" MenberNane (Bl ock | LazySpecifier)

The name specified in a setter declaration must be the name of a matching getter that directly occurs earlier in the body
containing the setter declaration. If a getter has a setter, we say that the value is variable.

Within the body of the setter, avalue reference to the getter evaluates to the value being assigned.
A setter implementation may be a block. The block may not contain a return directive that specifies an expression.

shared String name { return join(firstNane, |astNanme); }
assign nane { firstName=first(name); |astNane=last(nane); }

Alternatively, a setter implementation may be alazy specifier. The specified expression must be alega statement.

shared String name => join(n[0], n[1]);
assign nane => n = [first(nanme), |ast(nane)];

A setter may not be annotated shar ed, def aul t oOr act ual . The visibility and refinement modifiers of an attribute with a
setter are specified by annotating the matching getter.

4.8.4. Value type inference

An un-shar ed value with a block, specifier, or lazy specifier may be declared using the keyword val ue in place of the ex-
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plicit type declaration. Then the value'stype isinferred:

« if thevalueisareference with a specifier, then the type of the value is the type of the specified expression,

< if thevaueisagetter, and the getter implementation is alazy specifier, then the type of the value is the type of the spe-
cified expression,

« if the value is a getter, and the getter implementation is a block, and the getter contains no r et ur n directive, then the
type of the value is Bot t om(thisis the case where the getter always terminatesin at hr ow directive), or

« otherwise, the type of the valueis the union of all returned expression types of r et ur n directives of the getter body.

val ue names = List<String>();
vari abl e val ue count = 0;

val ue nane => Name(firstName, initial, |astNanme);

4.8.5. Forward declaration of values

The declaration of areference may be separated from the specification or initialization of its persistent value. The declara-
tion of a getter may be separated from the specification of its implementation. If a value declaration does not have a spe-
cifier, lazy specifier, or ablock, and is not annotated f or mal , it is aforward-declared value.

A forward-declared value may later be specified using a specification statement, as defined in §5.2.3 Specification state-
ments.

* The specification statement for a forward-declared getter is a lazy specification statement with no parameter list, and a
specified expression assignable to the type of the value.

e The specification statement for a forward-declared reference is an ordinary specification statement with a specified ex-
pression assignable to the type of the value.

String greeting;
swi tch (Il anguage)
case (en) {
greeting = "Hell o";

case (es) {
greeting = "Hol a";
}

el se {
t hr ow LanguageNot Support ed();
}

print(greeting);
Every forward-declared value must explicitly specify atype. It may not be declared using the keyword val ue.
A toplevel value may not be forward-declared. An attribute of an interface may not be forward-declared.
A forward-declared getter may not have a setter.
If ashared value is forward-declared, its implementation must be definitely specified by all conditional paths in the class
initializer.
4.8.6. Formal and default attributes

If a value declaration does not have a specifier, lazy specifier, or a block, and is annotated shar ed, and is a member of
either:

* aninterface, or
¢ aclassannotated abst ract or f or mal ,

then the value declaration may be annotated f or mal , and iscalled af or mal attribute, or, sometimes, an abstract attribute.
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shared formal variable String firstNane;

An attribute which is not annotated f or mal is called a concrete attribute.

If a concrete attribute is annotated shar ed, and is a member of a class or interface, then it may be annotated def aul t and is
caled adef aul t attribute.

shared default String greeting = "Hello";

An attribute annotated f or mal may not specify an implementation (a specifier, lazy specifier, or ablock). Nor may there be
asetter for aformal attribute.

An attribute annotated def aul t may specify an implementation (a specifier, lazy specifier, or ablock), or may be forward-
declared.

Every formal attribute must explicitly specify atype. It may not be declared using the keyword f uncti on.
A toplevel attribute may not be annotated f or mal oOr def aul t .

An un-shar ed attribute may not be annotated f or mal or def aul t .

4.8.7. Attribute refinement

Ceylon allows attributes to be refined, just like methods. This helps eliminate the need for Java-style getter and setter
methods.

e A classorinterface may refine any f or mal or def aul t attribute it inherits, unless it inherits a non-f or mal non-def aul t
attribute that refines the attribute.

¢ A concrete class must refine every for mal attribute it inherits, unless it inherits a non-f or mal attribute that refines the
attribute.

Any non-variable attribute may be refined by a reference or getter. A variable attribute may be refined by a vari abl e
refernce or by a getter and setter pair.

TODO: are you allowed to refine a getter or setter without also refining its matching setter or getter?

An attribute of a subtype refines an attribute of a supertype if the attribute of the supertype is shar ed and the two attributes
have the same name. The first attribute is called the refining attribute, and the second attribute is called the refined attrib-
ute.

Then, given the refined realization of the attribute it refines, as defined in §3.7.6 Realizations, the refining attribute must:

* bevariable, if the attribute it refinesis variable, and

< have exactly the same type as the redlization, if the attribute it refinesis variable,

* haveatypethat isassignable to the type of the refined schema, if the attribute it refinesis not variable, or
e if it has no type, the refined attribute must also have no type.

Furthermore:

* therefining attribute must be annotated act ual , and

 therefined attribute must be annotated f or mal or def aul t .

If an attribute is annotated act ual , it must refine some attribute defined by a supertype.

An attribute may not, directly or indirectly, refine two different attributes not themselves annotated act ual .

A non-variable attribute may be refined by a variable attribute.
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TODO: Isthat really allowed? It could break the superclass. Should we say that you are allowed to do it when you refine
an interface attribute, but not when you refine a superclass attribute?

Then evaluation and assignment of the attribute is polymorphic, and the actual attribute evaluated or assigned depends
upon the concrete type of the class instance.

shared abstract class AbstractPi () {
shared formal Float pi;
}

cl ass ConcretePi ()
extends AbstractPi () {
shared actual Float pi = calculatePi();

}

Alternatively, a subtype may refine an attribute using a specification statement, as defined in 85.2.3 Specification state-
ments. The specification statement must satisfy the requirements of §4.8.5 Forward declaration of values above for spe-
cification of aforward-declared attribute.

cl ass ConcretePi ()
extends AbstractPi () {
pi = calculatePi();
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Function, value, and class bodies contain procedural code that is executed when the function is invoked, the value evalu-
ated, or the class instantiated. The code contains expressions and control directives and is organized using blocks and con-
trol structures.

Note: the Ceylon language has a recursive block structure—statements and declarations that are syntactically valid in the
body of a toplevel declaration are, in general, also syntactically valid in the body of a nested declaration or of a control
structure, and vice-versa.

5.1. Block structure and references

A body is a block, defined in §5.2 Blocks and statements, class body, defined in 84.5 Classes, interface body, defined in
84.4 Interfaces, or comprehension clause, defined in §86.6.6 Comprehensions. Every body (except for a comprehension
clause) is list of semicolon-delimited statements, control structures, and declarations, surrounded by braces. Some bodies
end in a control directive. Every program element in the list is said to directly occur in the body. A program element dir-
ectly occurs earlier than a second program element if both program elements directly occur in abody and the first program
element occurs (lexically) earlier in the list than the second program element.

A program element (indirectly) occursin abody if:

« theprogram element directly occursin the body, or

» the program element indirectly occurs inside the body of a declaration or control structure that occurs directly in the
body.

We sometimes say that the body contains the program element if the program element (indirectly) occursin the body.

A program element (indirectly) occurs earlier than a second program element if:

< thetwo program elements both directly occur in the same body, and the second program element occurs after the first
program element, or

» the second program element indirectly occurs inside the body of a declaration or control structure, and the first pro-
gram element directly occurs earlier than the declaration or control structure.

Then we also say that the second program element (indirectly) occurs later than the first. The set of program elements that
occur later than a program element is sometimes called the lexical scope of the program element.

A program element sequentially occursin abody if:

» the program element directly occursin the body, or
< the program element sequentially occurs inside the body of a control structure that occurs directly in the body.

A program element sequentially occurs earlier than a second program element if:

» thetwo program elements both directly occur in the same body, and the second program element occurs after the first
program element, or

« the second program element sequentially occurs inside the body of a control structure, and the first program element
directly occurs earlier than the declaration or control structure.

If a program element sequentially occurs earlier than a second program element, the sequence of statements from the first
program element to the second program element comprises:

» the sequence of statements that occur directly in the body in which the first program element directly occurs, beginning
from the first program element and ending with the second program element, if the second program element occurs dir-
ectly in the same body as the first program element, or

« the sequence of statements that occur directly in the body in which the first program element directly occurs, beginning
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from the first program element and ending with the declaration or control structure in whose body the second program
element sequentially occurs, followed by the sequence of statements from the first statement of the declaration whose
body contains the second program element to the second program element itself, otherwise.

5.1.1. Declaration name unigueness

A program element is contained within the namespace of adeclaration if either:

the declaration is atoplevel declaration, and the program element is atoplevel declaration of the same package,
» thedeclaration directly occursin a body, and the program element sequentially occurs in the same body,

« thedeclaration is a parameter or type parameter, and the program element sequentially occurs in the body of the para-
meterized declaration, or

» the program element is a control structure variable or iteration variable of a control structure that sequentially occursin
the namespace of the declaration.

The namespace of a declaration may not contain a second declaration with the same name. For example, the following is
illegal:

function fun(Fl oat nunber) ({
i f (nunber<0.0) {
Fl oat nunber = 1.0; //error

}

A class or interface may not inherit a declaration with the same name as a declaration it contains unless either:

« thecontained declaration directly or indirectly refines the inherited declaration,
« thecontained declaration is not shar ed, or
¢ theinherited declaration isnot shar ed.

A class or interface may not inherit two declarations with the same name unless either:

* both of theinherited declarations are f or mal and directly or indirectly refine some member of a common supertype,

« the class or interface contains a declaration that directly or indirectly refines both the inherited declarations (in which
case both the inherited declarations directly or indirectly refine some member of acommon supertype),

< one of theinherited declarations directly or indirectly refines the other inherited declaration, or

* aleast one of the inherited declarations is not shar ed.

5.1.2. Scope of a declaration

The scope of a declaration is governed by the body or package in which it occurs. A declaration is in scope at a program
element if and only if either:

e thedeclaration is aparameter or type parameter of a declaration whose body contains the program element,

« the declaration is a control structure variable or iteration variable belonging to a block of a control structure that con-
tains the program element,

» the program element belongsto or is contained in the body of the declaration itself,
< the program element belongsto or is contained in the body of a class or interface which inherits the declaration,

« thedeclaration directly occursin abody containing the program element,
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« the declaration is imported by the compilation unit containing the program element and is visible to the program ele-
ment, or

» thedeclaration isatoplevel declaration in the package containing the program element.

Where:

« A control structure variable or iteration variable belongs to a block of a control structure if the block immediately fol-
lows the declaration of the variable.

e A program element belongs to a declaration if it occursin the ext ends, sati sfi es, of , Or gi ven clause of the declara-
tion.

Furthermore:

« A condition variable of a condition belonging to a condition list isin scope in any condition of the same condition list
that occurs lexically later.

« A resource expression variable of atry statement is in scope in any resource expression of the same resource expres-
sion list that occurs lexically later.

< Aniteration variable or condition variable of a comprehension isin scope in any clause of the comprehension that oc-
curslexically later, since comprehension clauses are viewed as nested bodies.

And finally, there are special rules for annotation lists, defined in §7.1.1 Annotation lists:

« Anannotation argument list belongs to the annotated declaration.
e Anannotation name is considered to occur directly in the compilation unit containing the program element.

Note: if no reference to an un-shar ed declaration occurs within the scope of the declaration, a compiler warning is pro-
duced.

5.1.3. Visibility

Classes, interfaces, functions, values, aliases, and type parameters have names. Occurrence of a name in code implies a
hard dependency from the code in which the name occurs to the schema of the named declaration. We say that a class, in-
terface, value, function, alias, or type parameter is visible to a certain program element if its name may occur in the code
that belongs to that program element.

The visibility of a declaration depends upon where it occurs, and upon whether it is annotated shar ed. A toplevel or mem-
ber declaration may be annotated shar ed:

* |If atoplevel declaration is annotated shar ed, it is visible wherever the package that contains it is visible. Otherwise, a
toplevel declaration isvisible only to code in the package containing its compilation unit.

e |f amember declaration is annotated shar ed, it is visible wherever the class or interface that contains it is visible. Oth-
erwise, a declaration that occurs directly inside a class or interface body is visible only inside the class or interface de-
claration.

A type parameter or a declaration that occurs directly inside a block (the body of a function, getter, setter, or control struc-
ture) may not be annotated shar ed.

* A type parameter is visible only inside the declaration to which it belongs.
e A declaration that occurs directly inside ablock is visible only inside the block.

TODO: Should we allow you to limit the effect of the shar ed annotation by specifying a containing program element or
package?

We say that atype is visible to a certain program element if it is formed from references to classes, interfaces, type para-
meters, and type aliases whose declarations are visible to the program element. For shar ed declarations:
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The type of avalue must be visible everywhere the value itself isvisible.

The return type of a function must be visible everywhere the function itself isvisible.

The satisfied interfaces of a class or interface must be visible everywhere the class or interface itself isvisible.
The superclass of aclass must be visible everywhere the classitself isvisible.

The aliased type of aclass dlias, interface alias, or type alias must be visible everywhere the dliasitself isvisible.

5.1.4. Hidden declarations

If two declarations with the same name or imported name, as defined in 84.2.5 Imported name, are both in scope at a cer-
tain program element, then one declaration may hide the other declaration.

If an inner body is contained (directly or indirectly) in an outer body, a declaration that is in scope in the inner body
but is not in scope in the outer body hides a declaration that is in scope in the outer body. (In particular, a declaration
inherited by anested class or interface hides a declaration of the containing body.)

An un-shar ed declaration occurring directly in the body of a class containing the program element hides a declaration
inherited by the class.

An act ual declaration hides the declaration it refines.

A declaration occurring in abody containing the program element hides a declaration imported by the compilation unit
containing the body or implicitly imported from the module ceyl on. | anguage.

A toplevel declaration of the package containing the program element hides a declaration implicitly imported from the
module ceyl on. | anguage.

A declaration explicitly imported by the compilation unit containing the program element hides a declaration implicitly
imported from the module cey! on. | anguage.

A declaration explicitly imported by the compilation unit containing the program element hides a toplevel declaration
of the package containing the compilation unit.

A declaration explicity imported by name in the compilation unit containing the program element hides a declaration
explicitly imported by wildcard in the compilation unit.

For example, the following codeislegal:

cl ass Person(nane) {

}

String nane;

shared String | oner CaseNane {
String name = this.nane. | owercased;
return nane;

Asisthis code:

class Point(x, y) {

}

shared Fl oat x;
shared Fl oat vy;

cl ass Conpl ex(Fl oat x, Float y=0.0)

extends Point(x, y) {}

When a member of a class is hidden by a nested declaration, the member may be accessed via the self reference t hi s,
defined in §6.3.1 this, or viathe outer instance reference out er , defined in §6.3.2 outer.

shared class Itemnane) {

variable String nane;

shared voi d changeNane(String nanme) {
thi s. name = nang;

}
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cl ass Catal og(nane) {
shared String nane;
cl ass Schema(nane) {
shared String nane;
Cat al og catal og => outer;
String catal ogNane => out er. nane;
cl ass Tabl e(nane) {
shared String nane;
Schema schema => outer;
String schemaName => outer. nang;
String catal ogNane => cat al og. nane;

}

When a toplevel declaration of a package is hidden by another declaration, the toplevel declaration may be accessed via
the containing package reference package, defined in §6.3.4 package.

Integer n => 0;
Integer f(Integer n) => n+package. n;

5.1.5. References and block structure

A declaration may be in scope at a program element, but not referenceable at the program element. A declaration is refer-
enceable at aprogram element if the declaration isin scope at the program element and either:

« the program element occurs within the lexical scope of the declaration, or
« thedeclaration does not directly occur in ablock or in the initializer section of a class body.

Note that these rules have very different consequences for:

« adeclaration that occursin a block, as specified in §5.2 Blocks and statements, or in an class initializer section, as spe-
cified in 84.5.2 Initializer section, and

« atoplevel declaration, as specified in §4.1.1 Toplevel and nested declarations, or a declaration that occursin aclass de-
claration sectiony, as specified in 84.5.3 Declaration section, or interface body, as specified in §4.4.1 Interface bodies.

Declarations that occurs in a block or class initializer section are interspersed with procedural code that initializes refer-
ences. Therefore, a program element in ablock or initializer may not refer to a declaration that occurs later in the block or
class body. This restriction does not apply to declarations that occur in an interface body or class declaration section. Nor
doesit apply to toplevel declarations, which are not considered to have awell-defined order.

The following toplevel function declarations, belonging to the same package, are legal:

Fl oat x =>vy;
Float y => x;

This code is not legal, since the body of afunction is an ordinary block:

Fl oat - >Fl oat xy() {
Float x =>y; [//conpiler error: y is not referenceable
Float y => x;
return x->y;

}

Thiscodeisnot legal, since all three statements occur in the initializer section of the class body:

class Point() {
Float x =>y; [//conpiler error: y is not referenceable
Float y => x;
Fl oat - >Fl oat xy = x->y;

}

However, this code islegal, since the statements occur in the declaration section of the class body:

class Point() {
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Fl oat x =>vy;
Float y => x;

}

Likewise, this codeislegal, since the statements occur in an interface body:

interface Point {
Fl oat x =>vy;
Fl oat y => x;

5.1.6. Type inference and block structure

A value declared using the keyword val ue or a function declared using the keyword f unct i on may be in scope at a pro-
gram element, but its type may not be inferrable, as defined by §3.2.9 Type inference, from the point of view of that pro-
gram element.

The type of avalue or function declared using the keyword val ue or f uncti on isinferrable to a program element if the de-
claration isin scope at the program element and the program element occurs within the lexical scope of the declaration.

Note: the type of a value or function declared using the keyword val ue or f uncti on is not inferrable within the body of the
value or function itself.

For any other declaration, including any declaration which explicitly specifies its type, the type is considered inferrable to
aprogram element if the declaration isin scope at the program element.

Thefollowing codeis not legal:

interface Point {
value x =>vy; [//conpiler error: type of y is not inferrable
value y => x;

}

However, this codeislegal:

interface Point {
value x =>vy;
Float y => x;

5.1.7. Unqualified reference resolution

Anunqualified referenceis:

< thetype namein an unqualified type declaration or type argument, as defined by §3.2.7 Type expressions, for example
String and Sequence in Sequence<Stri ng>,

« thevalue, function, or type name in a base expression, as defined by 86.5.1 Base expressions, for example count er in
counter. count,entries and peopl e inentri es(peopl e*. nane), Or Entry, narme, andi temin Entry(name, i tem, OF

« thetype name in an unqualified type in a static expression, as defined by 86.5.5 Static expressions, for example Se-

quence in Sequence. i terator.

If aprogram element contains an unqualified reference:

« there must be at least one declaration with the given name or imported name, as defined in 84.2.5 Imported name, in
scope at the program element, and

e if multiple declarations with the given name or imported name are in scope at the program element where the given
name occurs, then it is guaranteed by the type system and 85.1.1 Declaration name uniqueness that there is exactly one
such declaration which is not hidden by any other declaration.

Then the reference is to this unique unhidden declaration, and:
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» thedeclaration must be referenceable at the program element,
» thetype of the declaration must be inferrable to the program element, and
< if thedeclaration is forward-declared, it must be definitely initialized at the program element.

As a specia exception to the above, if there is no declaration with the given name or imported name in scope at the pro-
gram element and the program element occurs inside a dynani ¢ block, then the unqualified reference does not refer to any
statically typed declaration.

If an unqualified reference refers to a member declaration of atype, then there is a unique inheriting or declaring class or
interface for the unqualified reference, that is, the unique class or interface in whose body the unqualified reference occurs,
and which declares or inherits the member declaration, and for which the member is not hidden at the program element
where the unqualified reference occurs.

5.1.8. Qualified reference resolution
A qualified referenceis:

« the type name in a qualified type declaration or type argument, as defined by §3.2.7 Type expressions, for example
Buf f er in Buf f er edReader . Buf f er,

» the value, function, or type name in a member expression, as defined by §6.5.2 Member expressions, for example
count incounter.count,split intext.split(),orBuffer inbr.Buffer(),

« thetype namein aqualified type in a static expression, as defined by §6.5.5 Static expressions, for example Buf fer in
Buf f er edReader . Buf fer. si ze, or the member name in a dstatic expression, for example iterator in Se-
quence.iterator, Or si ze inBuf f er edReader . Buf fer. si ze.

Every qualified reference has a qualifying type:

« For atype declaration, the qualifying typeisthe full qualified type the qualifies the type name.

< For avauereference or callable reference, the qualifying type is the type of the receiver expression.

« For astatic reference, the qualifying type isthe full qualified type the qualifies the type or member name.
A qualified reference may not have Not hi ng as the qualifying type.

If aprogram element contains a qualified reference:

« the qualifying type must have or inherit at least one member or nested type with the given name or imported name, as
defined in §4.2.5 Imported name, which is visible at the program element, and

« if there are multiple visible members with the given name or imported name, then it is guaranteed by the type system
and 8§5.1.1 Declaration name uniqueness that there is exactly one such member which is not refined by another mem-
ber, except

« if the qualifying type inherits a class or interface that contains the program element, and an un-shar ed declaration con-
tained directly in the body of this class or interface has the same name as a shar ed member of the qualifying type, in
which case the un-shar ed declaration hides the shar ed member, or

« if the qualifying type is an intersection type, in which case there may be multiple members which are not refined by
another member, but where there is exactly one such member that is refined by each of these members, but is not re-
fined by another member that is refined by al of these members, except

« inthe case of certain pathological intersection types, where two of the intersected types declare distinct members with
the same name, that do not refine any member of a common supertype (in which case what we actually have are dis-
joint types that are nevertheless not considered provably disjoint within the rules of the typesystem), and in this case
the qualified referenceis considered illegal.

Then the reference is to the unique member or nested class. If the program element is contained in the body of a class or
interface, and the member declaration directly occurs in the body of the class or interface, and the qualified reference is a
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value reference or callable reference, and the receiver expression is a self reference to the instance being initialized, then:

« themember declaration must be referenceable at the program element,

* thetype of the member must be inferrable to the program element, and

« if the member declaration is forward-declared, it must be definitely initialized at the program element.

As a specia exception to the above, if the program element occurs inside a dynani ¢ block, and the the receiver expression
has no type, then the qualified reference does not refer to any statically typed declaration.

5.2. Blocks and statements

A blockislist of semicolon-delimited statements, control structures, and declarations, surrounded by braces.

Bl ock: "{" (Declaration | Statenent)* "}"

A statement is an assignment or specification, an invocation of a method, an instantiation of a class, a control structure, a
control directive, or an assertion.

Statenment: ExpressionStatenment | Specification | Assertion | DirectiveStatenent | Control Structure

A statement or declaration contained in a block may not evaluate a value, invoke a function, instantiate a class, or extend a
class whose declaration occurs later in the block.

5.2.1. Expression statements
Only certain expressions are valid statements:
e assignment,
» prefix or postfix increment or decrement,
* invocation of amethod,
e instantiation of aclass.

Expressi onStatenment: ( Assignment | |ncrementOrDecrenent | Invocation ) ";"
For example:

X += 1;

X++;

print("Hello");

Mai n( process. argunents) ;

5.2.2. Control directives

A control directive statement ends execution of the current block and forces the flow of execution to resume in some outer
scope. They may only occur as the lexically last statement of a block.

DirectiveStatenent: Directive ";"

There are four control directives:

* thereturn directive—to return a value from a getter or non-voi d function or terminate execution of a setter, class ini-
tializer, or voi d method,
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* thebreak directive—to terminate aloop,
e theconti nue directive—to jump to the next iteration of aloop, and
* thet hrowdirective—to raise an exception.

Directive: Return | Throw | Break | Continue

For example:

t hrow Exception();
return x+y;

br eak;

conti nue;

The ret urn directive must sequentially occur in the body of a function, getter, setter, or class initializer. In the case of a
setter, class initializer, or voi d function, no expression may be specified. In the case of a getter or non-voi d function, an
expression must be specified. The expression type must be assignable to the return type of the function or the type of the
value. When the directive is executed, the expression is evaluated to determine the return value of the function or getter.

Return: "return" Expression?

If the specified expression has no type, or if the function or getter has no type, and the directive occurs within a dynani ¢
block, then the directive is not type-checked at compile time.

Note: aret urn statement returns only from the innermost function, getter, setter, or class initializer, even in the case of a
nested or anonymous function. There are no "non-local returns’ in the language.

Thebr eak directive must sequentially occur in the body of aloop.

Break: "break"

Thecont i nue directive must sequentially occur in the body of aloop.

Conti nue: "conti nue"

A t hr ow directive may appear anywhere and may specify an expression, whose type must be a subtype of type Except i on
defined in ceyl on. | anguage. When the directive is executed, the expression is evaluated and the resulting exception is
thrown. If no expression is specified, the directive is equivalent to t hr ow Exception() .

Throw. "throw' Expression?

If the specified expression has no type, and the directive occurs within a dynani ¢ block, then the directive is not type-
checked at compile time.

5.2.3. Specification statements

A specification statement may specify or initialize the persistent value of a forward-declared reference, or specify the im-
plementation of aforward-declared getter or function.

Speci fication: ValueSpecification | LazySpecification

The persistent value of a forward-declared reference or the implementation of a forward-declared function may be spe-
cified by a value specification statement. The value specification statement consists of an unqualified value reference and
an ordinary = specifier. The value reference must refer to a declaration which sequentially occurs earlier in the body in
which the specification statement occurs.

Val ueSpeci fi cation: Menber Nane Specifier ";"
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The type of the specified expression must be assignable to the type of the reference, or to the callable type of the function.

If the specified expression has no type, or if the reference or function has no type, and the specification occurs within a dy-
nam ¢ block, then the specification is not type-checked at compile time.

String greeting;
if (exists nane) {

greeting = "hello "~ “name " ";
el se {
greeting = "hello world";

String process(String input);
if (normalize) {
process = String.normalized;

el se {
process = (String s) => s;
}

Note: thereis an apparent ambiguity here. Is the statement x=1; a value specification statement, or an assignment expres-
sion statement? The language resolves this ambiguity by favoring the interpretation as a specification statement whenever
that interpretation is viable. This is a transparent solution, since it accepts strictly more code than the alternative inter-
pretation, and for ambiguous cases the actual semantics are identical between the two interpretations.

The implementation of forward-declared getter or function may be specified using alazy specification statement. The spe-
cification statement consists of either:

« anunqualified value reference and alazy => specifier, or
« aunqualified callable reference, one or more parameter lists, and alazy specifier.

The value reference or callable reference must refer to a declaration which sequentially occurs earlier in the body in which
the specification statement occurs.

A calable reference followed by a parameter list isitself considered a callable reference, called a parameterized reference.
If the parameter list has type P then the callable reference must have the exact type cal | abl e<R, P> for some type R. Then
the type of the parameterized referenceisR.

Par anet eri zedRef erence: Menber Nane Par anet er s+

Thus, the specification statement consists of a parameterized reference followed by alazy specifier.

LazySpeci fication: (MenberNane | ParaneterizedReference) LazySpecifier ;"

The type of the specified expression must be assignable to the type of the parameterized reference, or to the type of the
value reference.

String greeting;
if (exists name) {
greeting => "hello "~ “name’ " ";

el se {
greeting => "hello world";

String process(String input);
if (nornalize) {
process(String input) => input.normalized;

el se {
process(String s) => s;

5.2.4. Definite return

A sequence of statements may definitely return.
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* A sequence of statements definitely returnsif it endsin aret urn or t hr ow directive, or in a control structure that defin-
itely returns, or contains an assertion with a condition list that is never satisfied.

e A body definitely returnsif it contains alist of statements that definitely returns.

e Anif conditional definitely returnsif it has an el se block and both thei f and el se blocks definitely return, or if its
condition list is always satisfied and the i f block definitely returns, or if its condition list is never satisfied and it has
an el se block that definitely returns.

* A switch conditional definitely returnsif all case blocks definitely return and the el se block, if any, definitely returns.

e A for loop definitely returns if it has an el se block that definitely returns, and there is no br eak directive in the f or
block, or if the iterated expression type is a nonempty type, and thef or block definitely returns.

e A whil e loop definitely returnsif its condition list is always satisfied and the whi | e block definitely returns.

e Atry/ cat ch exception manager definitely returnsif thet ry block definitely returnsand al cat ch blocks definitely re-
turn or if thefi nal I y block definitely returns.

The body of anon-voi d method or getter must definitely return.

A body may not contain an additional statement, control structure, or declaration following a sequence of statements that
definitely returns. Such a statement, control structure, or declaration is considered unreachable.

5.2.5. Definite initialization

A sequence of statements may definitely initialize a forward-declared declaration.

« A sequence of statements definitely initializes a declaration if one of the statements is a specification statement or as-
sigment expression for the declaration or a control structure that definitely initializes the declaration, or if the sequence
of statementsendsin ar et urn or t hr ow directive, or contains an assertion with a condition list that is never satisfied.

e Anif conditional definitely initializes a declaration if it has an el se block and both thei f and el se blocks definitely
initialize the declaration, of if its condition list is always satisfied and thei f block definitely initializes the declaration,
of if its condition list is never satisfied and it has an el se block that definitely initializes the declaration.

e A switch conditional definitely initializes a declaration if al case blocks definitely initialize the declaration and the
el se block, if any, definitely initializes the declaration.

e Ator loop definitely initializes a declaration if it has an el se block that definitely initializes the declaration, and there
is no break directive in the for block, or if the iterated expression type is a nonempty type, and the f or block defin-
itely initializes the declaration.

e A whil e loop definitely initializes a declaration if its condition list is always satisfied and the whi | e block definitely
initializes the declaration.

e Atry/cat ch exception manager definitely initializes a declaration if thet ry block definitely initializes the declaration
and all cat ch blocks definitely initialize the declaration or if thefi nal | y block definitely initializes the declaration.

A forward-declared declaration is considered definitely initialized at a certain statement or declaration if its declaration has
a specifier, if it isreferenced by a parameter, or if it is definitely initialized by the sequence of statements from its declara-
tion to the given statement or declaration.

A forward-declared declaration must be definitely initialized wherever any value reference or callable reference to it oc-
curs as an expression within the body in which it is declared.

A shar ed forward-declared declaration belonging to a class and not annotated | at e must be definitely initialized:

e atevery return statement of theinitializer of the containing class, and

e a the very last expression statement, directive statement or specification statement of the initializer of the containing
class.
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A specification statement for a method or non-vari abl e reference, getter, or function may not (indirectly) occur in af or
or whi | e block unless the declaration itself occurs within the samef or or whi | e block.

TODO: Furthermore, the typechecker does some tricky analysis to determine that code like the following can be accepted:

Bool ean mi nors;
for (p in people) {
if (p.age<18) ({
mnors = true;
br eak;

}

el se {
m nors = fal se;
}

5.2.6. Definite uninitialization

A sequence of statements may possibly initialize a forward-declared declaration.

* A seguence of statements possibly initializes a declaration if one of the statements is a specification statement for the
declaration or a control structure that possibly initializes the declaration.

e« Anif conditional possibly initializes a declaration if either the i f block possibly initializes the declaration and the
condition list is not never satisfied, or if the el se block, if any, possibly initializes the declaration and the condition list
isnot always satisfied.

* A switch conditional possibly initializes a declaration if one of the case blocks possibly initializes the declaration or
theel se block, if any, possibly initializes the declaration.

e A for loop possibly initializes a declaration if the f or block possibly initializes the declaration or if it has an el se
block that possibly initializes the declaration.

e A while loop possibly initializes a declaration if the whi | e block possibly initializes the declaration and the condition
list isnot never satisfied.

e A try/ cat ch exception manager possibly initializes a declaration if thet ry block possibly initializes the declaration, if
one of the cat ch blocks possibly initializes the declaration, or if thefi nal I y block possibly initializes the declaration.

A forward-declared declaration is considered definitely uninitialized at a certain statement or declaration if:

« itisnot possibly initialized by the sequence of statements from its declaration to the given statement or declaration,

* the statement does not (indirectly) occur in the f or block or el se block of afor loop with afor block that possibly
initializesit,

» the statement does not (indirectly) occur in the whi | e block of awhi | e loop with awhi I e block that possibly initializes
it,

» the statement does not (indirectly) occur in acat ch block of atry/ cat ch exception manager with at ry block that pos-
sibly initializesit, and

e the statement does not (indirectly) occur in the final Iy block of atry/ cat ch exception manager with atry block or
cat ch block that possibly initializesit.

A method or non-vari abl e local or simple attribute must be definitely uninitialized wherever any value reference or
callable reference to it occurs as a specification statement within the body in which it is declared.
5.3. Control structures and assertions

Control of execution flow may be achieved using control directives and control structures. Control structures include con-
ditionals, loops, and exception management.

Ceylon provides the following control structures:
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« theif/el se conditional—for controlling execution based on a boolean condition, type condition, or check for a non-
null or non-empty value,

« theswitch/ casel el se conditional—for controlling execution using an enumerated list of values or types,

* the whil e loop—for loops which terminate based on a boolean condition, type condition, or check for a non-null or
non-empty value,

» thefor/el se loop—for looping over elements of an iterable object, and

e thetry/catch/finally exception manager—for managing exceptions and controlling the lifecycle of objects which
require explicit destruction.

Control Structure: IfElse | SwitchCaseElse | Wiile | ForFail | TryCatchFinally | Dynamc

Control structures are not considered to be expressions, and therefore do not evaluate to a value. However, comprehen-
sions—and conditional expressions, planned for a future release of the language—are part of the expression syntax and
share much of the syntax and semantics of the control structures they resemble.

Assertions are runtime checks upon program invariants, or function preconditions and postconditions. An assertion failure
represents a bug in the program, and is not considered recoverable. Therefore, assertions should not be used to control "nor-
mal" execution flow.

Note: of course, in certain circumstances, it is appropriate to handle the exception that results from an assertion failure,
for example, to display a message to the user, or in a testing framework to aggregate and report the failures that occurred
in test assertions. A test failure may be considered "normal" occurrence from the point of view of a testing framework, but
it'snot "normal” in the sense intended above.

5.3.1. Control structure variables

Assertions and some control structures alow inline declaration of a variable. A variable is a reference, as defined by
84.8.1 References.

TypedVari abl e: Type Menber Nane

In most cases, the explicit type be omitted.

Vari abl e: Type? Menber Nane

If the type is missing from the declaration, the type of the variable is inferred, according to rules that depend upon the con-
trol structure to which the variable belongs.

A variable declared by an assertion is areference scoped to the body in which the assert statement occurs.

A variable declared by a control structure is areference scoped to the block that immediately follows the variable declara-
tion:

e Foravariableinanif condition, the scope of the variableisthei f block.

« For avariablein awhi | e condition, the scope of the variable isthe whi | e block.
e Foravariablein af or iterator, the scope of the variable isthef or block.

e Foravariableinatry clause, the scope of the variableisthet ry block.

e Foravariablein acat ch clause, the scope of the variable isthe cat ch block.

e Foravariableinanassert statement, the scope of the variableisthe body containing the assert statement.

5.3.2. lteration variables

A for loop requires an iteration variable declaration. An iteration variable is a reference scoped to the body of the loop.
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IteratorVariable: Variable | EntryVariabl ePair

An iteration variable of type Ent ry may be specified in destructured form.

EntryVari abl ePair: Variable "->" Variable
If the type is missing from the declaration, the type of the iteration variable isinferred:

* given an iterated expression which has the principal instantiation I t er abl e<x>, the inferred type of the variable is X,
unless

» thedestructured formis used for an iterated expression which is has the principal instantiation | t er abl e<Ent ry<X, Y>>,
in which case the inferred type of the first variable is X, and the inferred type of the second variableis.

TODO: Should we, purely for consistency, let you writefor (f(Float x) in functions), eventhough it's not very use-
ful?

5.3.3. Control structure conditions

Some control structures expect conditions. There are four kinds of condition:

* aboolean condition is satisfied when a boolean expression evaluatestot r ue,

e anassignabilty condition is satisfied when an expression evaluates to an instance of a specified type,
e an existence condition is satisfied when an expression evaluates to a non-null value, and

e anonemptiness condition is satisfied when an expression evaluates to a non-null, non-empty value.

Condi tion: Bool eanCondition | IsCondition | ExistsO NonenptyCondition
A condition list has one or more conditions.

ConditionList: "(" Condition ("," Condition) ")"
A condition in the list may refer to a condition variable defined earlier in thelist.

A condition list is considered to be always satisfied if every condition in thelist is always satisfied. A condition list is con-
sidered to be never satisfied if some condition in thelist is never satisfied.

TODO: are we going to support sati sfi es conditions on type parameters, for example, i f (El enent satisfies Ob-
j ect), to allow refinement of its upper bounds?

5.3.4. Boolean conditions
A boolean condition isjust an expression.

Bool eanCondi ti on: Expression

The expression must be of type Bool ean.

A boolean condition is considered to be always satisfied if it is a value reference to true. A boolean condition is con-
sidered to be never satisfied if itisavauereferencetof al se.

TODO: Should we do some more sophisticated static analysisto determine if a condition is always/never satisfied?

5.3.5. Assignability, existence, and nonemptiness conditions

An assignability, existence, or nonemptiness condition may contain either:

« anunqualified value reference to anon-vari abl e, Non-def aul t reference, or
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« aninline variable declaration together with an expression.
In the case of an assignability or existence condition, the type of the variable may be inferred.

IsCondition: "!"? "is" (TypedVariable Specifier | Type Menber Nane)
Exi st sOr Nonenpt yCondi ti on: ("exists" | "nonenpty") (Variable Specifier | MenberNane)

TODO: arewegoingtoallowis Type thisandis Type outer to harrow the type of a self reference?

The type of the value reference or expression must be:

e inthe case of an assignability condition, a type which is not a subtype of the specified type, but whose intersection
with the specified type is not exactly Not hi ng, except

* inthe case of a negated assignability condition with !i s, a type whose intersection with the specified type is not ex-
actly Not hi ng, and which is not a supertype of the specified type, or

e inthe case of an exists condition, a type whose intersection with Nul | is not exactly Not hi ng and whose intersection
with bj ect isnot exactly Not hi ng, or

¢ inthe case of a nonemptiness condition, a subtype of Anyt hi ng[ ] ? whose intersection with [] is not exactly Not hi ng,
and whose intersection with [ Not hi ng+] iS not exactly Not hi ng.

Note: an assignability condition may narrow to an intersection or union type.

if (is Printable& dentifiable obj) { ... }
if (is Integer|Float num { ... }

Every existence or nonemptiness condition is equivalent to—and may be considered an abbreviation of—an assignability
condition:

e exists xiseguivalenttois bject x,and
e nonenpty x isequivaenttois [E+] x wherex isan expression whose type has the principal instantiation g[ ] 2.

For ani s assignability condition:

« if the condition contains a value reference, the value will be treated by the compiler as having type T&x where the con-
ditional expression isof type T and X is the specified type, inside the block that immediately follows the condition, un-
less

e itisanegated assignability condition with !i s, in which case the value will be treated by the compiler as having type
T~X.

Where, for any given types T and X, the type T~-X is determined as follows:

e if xcoversT, asdefined by §3.4.1 Coverage, then T~X iS Not hi ng,
< if Tisanintersection type, then T~X isthe intersection of al u-x for every type uin the intersection,
e if Tisaunion type, then T~x isthe union of al u-x for every type uin the union,

e if Tisan enumerated type or an instantiation of a generic enumerated type, then T~x is the union of all c-x for every
casecof T, or,

e otherwise, T-XisT.
If you prefer, you can think of the following:

Transaction tx = ...
if (is Usable tx) { ... }
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As an abbreviation of:

if (is Transaction&Usable tx =tx) { ... }

Where thet x declared by the condition hides the outer declaration of t x inside the block that follows.

For an exi st s existence condition:

« if the condition declares a variable, the declared type of the variable must be a supertype of T&j ect , where the spe-
cifier expression is of type T, or

« if the condition contains a value reference, the value will be treated by the compiler as having type T&vj ect inside the
block that immediately follows the condition, where the conditional expression is of typeT.

For anonenpt y nonemptiness condition:

« if the condition declares a variable, the declared type of the variable must be a supertype of T&] E+] , where the specifier
expression is of type T and T has the principal instantiation E[ ] 2, or

« if the condition contains a value reference, the value will be treated by the compiler as having type T&[ E+] inside the
block that immediately follows the condition, where the conditional expression is of type T and T has the principal in-
stantiation g[ ] 2.

If you prefer, you can think of the following:

if (exists nane) { ... }

As an abbreviation of:

if (exists String name = nanme) { ... }

Where the nane declared by the condition hides the outer declaration of nane inside the block that follows.

As a special exception to the above, if a condition occurs in adynani ¢ block, and conditional expression has no type, and
the condition contains a value reference, then:

« thevaue will be treated by the compiler as having type x where X is the specified type, inside the block that immedi-
ately follows the condition, unless

e itisanegated assignability condition !i s, an existence condition exi st s, or a nonempty condition nonenpt y, in which
case the value will be treated by the compiler as having no type.

5.3.6.if/else
Thei /el se conditional has the following form:

|fEl se: If Else?
If: "if" ConditionList Block
El se: "else" (Block | IfElse)

The construct may include a chain of an arbitrary number of child el se i f clauses.

i f (payment.anmunt <= account. bal ance) {
account . bal ance -= paynent. amount ;
paynent . paid = true;

el se {
t hr ow Not EnoughMboneyExcepti on();
}

shared void wel come(User? user) {
if (exists user) {
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print ("Wl conme back, "~“user.name "!");

el se {
print("Welcome to Ceylon!");

if (is CardPaynment p = order.paynent,
I'p. paid) {
p. card. charge(total);

5.3.7. switch/ casel el se
Theswi t ch/ case/ el se conditional has the following form:
Swi t chCaseEl se: Switch Cases
Switch: "switch" "(" Expression ")"
Cases: Caseltemt Defaul t Caselten®?
Caseltem "case" "(" Case ")" Block
Def aul t Casel tem "el se" Bl ock
Each case iseither:

« avalue case—alist of string literals, character literals, integer literals, negated integer literals, and/or value references
to anonymous classes, or

e atype case—an assignability condition of formis Vv for sometypev.

Case: CaseValue ("," CaseValue)* | "is" Type

CaseVal ue: Literal Case | BaseExpression

Literal Case: "-"? IntegerLiteral | CharacterLiteral | StringLiteral | VerbatinftringLiteral
Every case hasatype:

« for avalue case, the typeis the union of the types of the values, and

« for atype case, thetypeisthe specified type.

The type of a case must be a subtype of the swi t ch expression type.

For avalue case, each value reference must be to an anonymous class that is a subtype of | denti fiabl e| Nul I .
For atype case of type Vv, the intersection type v&U must not be exactly Not hi ng.

Two cases are said to be digjoint if the intersection of their types is exactly Not hi ng, as defined by §3.4.4 Digjoint types,
or if they are both value cases with distinct literal values. In every swi t ch statement, al cases must be mutually disjoint.

A swi t ch isexhaustive if there are no literal valuesin its cases, and the union type formed by the types of the cases of the
swi t ch coversthe swi t ch expression type, as defined by §3.4.1 Coverage.

If no el se block is specified, the swi t ch must be exhaustive.

Note: On the other hand, even if the swi t ch is exhaustive, an el se block may be specified, in order to allow a swi t ch that
accommodates additional cases without resulting in a compilation error.

As a special exception to the above, if aswitch occursin adynani ¢ block, and the swi t ch expression has no type, the

Project Ceylon: Final release draft (1.0) 77



Statements, blocks, and control structures

cases are not statically type-checked for exhaustion.
Note: an assignability condition case may narrow to an intersection or union type.

case (is Persistent & Serializable) { ... }
case (is Integer | Float) { ... }

If aswitch has an assignability condition case, then the swi t ch expression must be an unqualified value reference to a
non-vari abl e, NON-def aul t reference.

For an assignability condition case, the value referred by the swi t ch expression will be treated by the compiler as having
the intersection type of its declared type with the specified type inside the case block. This intersection type must not be
exactly Not hi ng.

As a special exception to the above, if aswitch occurs in adynani ¢ block, and the swi t ch expression has no type, the
value referred by the swi t ch expression will be treated by the compiler as having the the specified type inside the case
block.

Bool ean? maybe = ...

switch (maybe)

case (null, false) {
return fal se;

case (true) {
return true;
}

I nt eger | Fl oat nunber = ...
switch (nunber)
case (is Integer) {

return sqgrt(nunber.float);
}

case (is Float) {
return sqgrt(nunber);
}

A Java-style overloaded method may be emulated as follows:

shared void print<Printabl e>(Printable printable)
given Value of String | Integer | Float {
switch (printable)
case (is String) {
print("\" “printable "\"");
}

case (is Integer) {
print(printable + ".00");

case (is Float) {
print (formatFl oat (printable, 2));

5.3.8.for/el se

Thef or/ el se loop has the following form:
For Fai |l : For Fail?
For: "for" Forlterator Block
Fail: "el se" Block

Thefor iterator consists of an iteration variable declaration and an iterated expression that contains the range of values to
beiterated.

Forlterator: "(" IteratorVariable "in" Expression ")"

Thetype of the iterated expression depends upon the iteration variable declarations:
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* Theiterated expression must be an expression of type assignableto I t er abl e<x> where X is the declared type of the it-
eration variable.

« |f two iteration variables are defined, the iterated expression type must be assignable to I t er abl e<Ent ry<U, V>> where
uand v are the declared types of the iteration variables.

As aspecia exception to the above, if af or occursin adynani ¢ block, and the iterated expression has no type, the iterator
is not statically type-checked. If the iteration variable does not declare an explicit type, the iteration variable has no type.

for (p in people) {
print (p. nane);

vari abl e Fl oat sum = 0.0;
for (i in -10..10) {

sum += x[i] else 0.0;
}

for (word -> freq in wordFrequencyMap) {
print("The frequency of ““word " is "~“freq .");
}

for (p in group) {
if (p.age >= 18) {
| og.info("Found an adult: "“p.nane’ " .");
br eak;

}

el se {
log.info("No adult in group.");

5.3.9. while
Thewhi | e loop has the form:

Whi | e: LoopCondition Bl ock

The loop condition list determines when the loop terminates.

LoopCondi tion: "while" ConditionList

TODO: doeswhi | e need an el se block? Python hasit, but what is the real usecase?

vari abl e I nteger n=0;
variable [Integer*] seq = [];
whil e (n<=nax) {
seq=seq.w thTrai l i ng(n);
n+=st ep(n);

5.3.10. try/catch/finally

Thetry/ catch/ final |y exception manager has the form:

TryCatchFinally: Try Catch* Finally?

Try: "try" ("(" Resource ("," Resource) ")")? Block
Catch: "catch" "(" Variable ")" Bl ock

Finally: "finally" Block

Each cat ch block defines avariable. The type of the variable must be assignable to Except i on in ceyl on. | anguage. If no
typeisexplicitly specified, the typeisinferred to be Excepti on.
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Note: a cat ch block type may be a union or inter section type:

catch (Not FoundExcepti on| Del et edException e) { ... }
If there are multiple cat ch blocksin a certain control structure, then:

« The type of acatch variable may not be a subtype of any catch variable of an earlier cat ch block belonging to the
same control structure.

o If thetype of acatch variableis aunion type E1| E2| . . . | En then no member Ei of the union may be a subtype of any
catch variable of an earlier cat ch block belonging to the same control structure.

Thetry block may have alist of resource expressions, each of which may be either:

e aninstantiation expression, or
* aninline variable declaration together with an instantiation expression.

A resource expresson produces a heavyweight object that must be released when execution of the t ry terminates. Each re-
source expression must be of type assignable to d oseabl e in ceyl on. | anguage.

Resource: Invocation | Variable Specifier

If no type is explicitly specified for a resource variable, the type of the variable is inferred to be the type of the instanti-
ation expression.

try (file = File(path)) {
file.open(readOnly);

}
catch (Fi | eNot FoundException fnfe) {
print("file not found: "““path ™");

catch (Fil eReadException fre) {
print("could not read fromfile: ““path ™");

finally {
assert (file.closed);
}

try (Transaction()) {
try (s = Session()) {
return s.get(Person, id);

}

cat ch (Not FoundExcepti on| Del et edException e) {
return null;

}

5.3.11. Assertions
An assertion has an asserted condition list and, optionally, an annotation list.

Assertion: Annotations "assert" ConditionList ";"

The message carried by the assertion failure may be specified using adoc annotation.

"total must be |ess than well-defined bound"
assert (exists bound, total <bound);

If the assertion contains an assignability, existence, or nonemptiness condition containing a value reference then the com-
piler treats the referenced value as having a narrowed type at program elements that occur in the lexical scope of the asser-
tion.

{El ement*} elenments = ... ;
assert (nonenpty el ements);
El enent first = elenents.first;
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TODO: how can we support interpolation in the assertion failure message?

assert (total <bound)
else "total must be less than " bound " ";

5.3.12. Dynamic blocks
A dynani ¢ block allows interoperation with dynamically typed native code.

Dynami c: "dynam c" Bl ock

Inside adynani ¢ block an expression may have no type, as specified in Chapter 6, Expressions.

An expression with no type:

* may be specified or assigned to atyped value, as defined in 8§5.2.3 Specification statements,

¢ may be passed as the argument of a typed parameter in an invocation expression, as defined in §6.6.1 Direct invoca
tions,

* may betheinvoked expression of an invocation, as defined in §6.6 Invocation expressions,

* may bereturned by atyped function or getter, or thrown as an exception, as defined in 85.2.2 Control directives,

* may bethe operand of an operator expression, as defined in 86.5 Compound expressions, or

* may be the subject of a control structure condition, as defined in §5.3.5 Assignability, existence, and nonemptiness
conditions, aswi t ch, as defined in §85.3.7 switch/case/else, or af or iterator, as defined in §5.3.8 for/else.

Furthermore:

« aqualified or unqualified reference may not refer to a statically typed declaration, as defined by §85.1.7 Unqualified ref-
erence resolution and §5.1.8 Qualified reference resolution.

These situations result in dynamic type checking, as defined in §8.3.6 Dynamic type checking, since the usual static type
checks areimpossible.

Note: within a dynani ¢ block, Ceylon behaves like a language with optional static typing, performing static type checks
where possible, and dynamic type checking where necessary.

Project Ceylon: Final release draft (1.0) 81



Chapter 6. Expressions

An expression produces a value when executed. An algorithm expressed using functions and expressions, rather than se-
guences of statements is often easier to understand and refactor. Therefore, Ceylon has a highly flexible expressions syn-
tax. Expressions are formed from:

« litera values, string templates, and self references,

e evauation and assignment of values,

« invocation of functions and instantiation of classes,

« callablereferences, static references, and anonymous functions,
e comprehensions,

* metamodel references,

e enumeration of iterables and tuples, and

e operators.

Ceylon expressions are validated for typesafety at compile time. To determine whether an expression is assignable to a
program element such as a value or parameter, Ceylon considers the type of the expression (the type of the objects that are
produced when the expression is evaluated). An expression is assignable to a program element if the type of the expression
is assignabl e to the declared type of the program element.

Within adynani ¢ block, an expression may have no type, in the sense that its type can not be determined using static ana-
lysis of the code.

6.1. Literal values

Ceylon supports literal values of the following types:

* Integer andFl oat,

e Character, and

* String.

Thetypes| nt eger, Fl oat , Char act er, and St ri ng are defined in the module cey! on. | anguage.

Note: Ceylon does not need a special syntax for Bool ean literal values, since Bool ean is just a class with the cases t r ue
and f al se. Likewise, nul | isjust the singleton value of an anonymous class.

Literal: IntegerLiteral | FloatLiteral | CharacterLiteral | StringLiteral | VerbatinttringLiteral

All literal values are instances of immutable types. The value of aliteral expression is an instance of the type. How thisin-
stanceis produced is not specified here.

6.1.1. Integer number literals

Aninteger literal, as defined in §2.4.1 Numeric literals, is an expression of type I nt eger , representing a numeric integer.

5;

I nteger five
I nteger mask = $1111 0000;

I nteger white = #FFFF;

6.1.2. Floating point number literals
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A floating point literal, as defined in §2.4.1 Numeric literals, is an expression of type Fl oat , a floating-point representation
of anumeric value.

shared Float pi = 3.14159;

6.1.3. Character literals

A single character literal, as defined in §2.4.2 Character literals, is an expression of type Char act er, representing a single
32-bit Unicode character.

if (exists ch=string[i], ch =="+) { ... }

6.1.4. Character string literals

A character string literal or verbatim string, as defined in §2.4.3 String literals, is an expression of type St ri ng, represent-
ing a sequence of Unicode characters.

person. nane = "CGavin King";
print ("Ml bourne\tVic\tAustralia\nAtl anta\t GA\t USA\ nGuanaj uat o\t G o\ t Mexi co\n");

String verbatim= """A verbatimstring can have \ or a " init."""";

6.2. String templates
A character string template contains interpolated expressions, surrounded by character string fragments.

StringTenpl ate: StringStart (Val ueExpression StringMd)* Val ueExpression StringEnd

Each interpolated expression contained in the string template must have a type assignable to ject defined in
ceyl on. | anguage.

print("Hello, " “person.firstName'~ "~ “person.lastName ", the time is ~"Time() ~.");
print("1 +1=""1+1"");

A string template is an expression of type Stri ng.

6.3. Self references and the current package reference

The type of the following expressions depends upon the context in which they appear.

Sel f Reference: "this" | "super" | "outer" | "package"

A self reference expression may not occur outside of a class or interface body.

The immediately containing class or interface for a program element is the class or interface in which the program element
occurs, and which contains no other class or interface in which the program element occurs. If there is no such class or in-
terface, the program element has no immediately containing class or interface.

A this, outer, or super Self reference must have an immediately containing class or interface. An outer self reference
must have an immediately containing class or interface for itsimmediately containing class or interface.

6.3.1. this

The keyword t hi s refers to the current instance, as defined in §8.2.3 Current instance of a class or interface, of the imme-
diately containing class or interface (the class or interface in which the expression appears). Its type is the type of the im-
mediately containing class or interface.
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6.3.2. outer

The keyword out er refers to the current instance, as defined in §8.2.3 Current instance of a class or interface, of the class
or interface which immediately contains the immediately containing class or interface. Its type is assignable to the type of
this class or interface.

6.3.3. super

The keyword super refers to the current instance of the immediately containing class or interface. Its type is the intersec-
tion of the immediate superclass and all immediate superinterfaces of the class. A member reference such as super. x may
not resolveto af or mal declaration, nor to any member inherited from more than one supertype of the intersection type.

The keyword super may occur as the first operand of an of operator, in which case the second operand is any supertype of
the class. The expression (super of Type) hastype Type. A member reference such as (super of Type).x may not re-
solveto aformal member, nor to any member inherited from more than one supertype of Type, nor to any member that is
refined by the class or any intermediate supertype of the class.

6.3.4. package

The keyword package is not an expression, and does not have a well-defined type. However, it may be used to qualify and
disambiguate a value reference or callable reference. A value reference or callable reference qualified by the keyword
package always refersto atoplevel member of the containing package, never to an imported declaration or nested declara-
tion.

6.4. Anonymous functions

An anonymous function is a function, as specified in §4.7 Functions, with no name, defined within an expression. It com-
prises one or more parameter lists, followed by an expression.

Funct i onExpression: ("function" | "void")? Paraneters+ (LazySpecifier | Block)

The parameters are the parameters of the function. The lazy specifier or block of code is the implementation of the func-
tion. If the voi d keyword is specified, the function is avoi d function. Otherwise, it is a non-voi d function, and its return
typeisinferred.

The type of an anonymous function expression is the callable type of the function, as specified in §4.7.1 Callable type of a
function.

(Value x, Value y) => x<=>y
void (String nane) => print(nane)

(String string) {

value md = string.size % 2;

return [string[0..md],string[md+1...]];
}

An anonymous function occurring in an ext ends clause may not contain areference to avariable value.

Note: evaluation of an anonymous function expression, as defined in §8.4.5 Evaluation of anonymous functions results in
instantiation of an object of type cal I abl e. However, the members of this object are never in scope, do not hide other de-
clarations, and are not referenceable from within the anonymous function.

Note: thereis almost no semantic difference between the following function declarations:

Fl oat f(Float x)(Float y) => x*y;
Fl oat (Float) f(Float x) => (Float y) => x*y;

Thefirst formis strongly preferred.
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6.5. Compound expressions

Anatomisaliteral or self reference, a string template, an iterable or tuple enumeration, or a parenthesized expression.

Atom Literal | StringTenplate | SelfReference | G oupedExpression | Iterable | Tuple | Dynam cVal ue

A primary is formed by recursively forming member expressions and invocation expressions from an atom, base expres-
sion, or static expression.

Primary: Atom | BaseExpression | MenberExpression | StaticExpression | Invocation | Meta | Dec

More complex expressions are formed by combining expressions using operators, including assignment operators, and an-
onymous functions.

Val ueExpression: Primary | Operator Expression
Expressi on: Val ueExpression | Functi onExpression | Operatorlnvocation | OperatorMenber Expressi on

Parentheses are used for grouping:

G oupedExpression: "(" Expression ")"

A compound expression occurring in adynani ¢ block, and involving a qualified or unqualified reference with no type, or a
reference to a declaration with no type, may also have no type.

In particular, if an operand expression has no type, and the type of the operator expression depends upon the type of the
operand, and the operator expression occurs within adynani ¢ block, then the whole operator expression has no type.

6.5.1. Base expressions
A base expression is an unqualified identifier, with an optional list of type arguments:
BaseExpression: (MenberNane | TypeNane) TypeArgunents?

A base expression is either:

« areferenceto atoplevel function, toplevel value, or toplevel class,
« areference within the lexical scope of the referenced function, value, or class, or
« areference within the body of the referenced function, value, or class.

The referenced declaration is determined by resolving the unqualified reference as defined by 85.1.7 Unqualified reference
resolution. The unqualified realization for the unqualified reference is determined according to §3.7.6 Realizations.

The type argument list, if any, must conform, as defined by §3.6.1 Type arguments and type constraints, to the type para-
meter list of the unqualified realization.

If a base expression is a reference to an attribute, method, or member class of a class, the receiving instance is the current
instance of that class, as defined by §8.2.3 Current instance of a class or interface. Otherwise, there is no receiving in-
stance.

6.5.2. Member expressions
A member expression isareceiver expression, followed by an identifier, with an optional list of type arguments.

Menber Expression: (Primary ".") (MenberNane | TypeNane) TypeArgunents?

A member expression is areference to a member of atype: an attribute, method, or member class.

The referenced member is determined by resolving the qualified reference as defined by §5.1.8 Qualified reference resolu-
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tion. The qualified realization for the qualified reference is determined according to §3.7.6 Realizations.

The type argument list, if any, must conform, as defined by §3.6.1 Type arguments and type constraints, to the type para-
meter list of the qualified realization.

The receiver expression produces the instance upon which the member is invoked or evaluated. When a member expres-
sion is executed, the receiver expresson is evaluated to produce the receiving instance which is held until the member isin-

voked or evaluated, as defined in §8.4 Evaluation, invocation, and assignment.

6.5.3. Value references

A value reference is a base expression or member expression that references a value declaration.
The type of avalue reference expression is the type of the realization of the referenced value.

A value declaration is never generic, so avalue reference never has atype argument list.

A value reference that does not occur within any dynani ¢ block may not refer to a value declaration or value parameter
with no type.

A value reference which occurs within a dynani ¢ block and which does not reference any statically typed declaration, or
which references a value declaration or value parameter with no type, has no type.

If abase expression or member expression does not reference any statically typed declaration, and occurs within adynani ¢
block, then it is considered a value reference.

6.5.4. Callable references

A callable reference is a base expression or member expression that references something—a function or class—that can
be invoked or instantiated by specifying alist of arguments.

A callable reference may be invoked immediately, or it may be passed to other code which may invoke the reference. A
callable reference captures the return type and parameter list types of the function or class it refers to, allowing compile-
time validation of argument types when the callable reference is invoked.

Thetype of a callable reference expression is the callable type of the realization of the referenced function or class.

If acallable reference expression refers to a generic declaration, either:

e it must be immediately followed by an argument list, allowing the compiler to infer the type arguments, or
e it must have an explicit type argument list.
A callable reference may not appear as the receiver expression of a member expression.

Note: this restriction exists to eliminate an ambiguity in the interpretation of static expressions such as Per son. stri ng
and Per son. equal s.

A callable reference that does not occur within any dynani ¢ block may not refer to a function declaration with no return
type.

A callable reference which occurs within adynani ¢ block and which references a function declaration with no return type,
has no type.

Note: in a future release of the language, we would like to add a syntax for obtaining a callable reference to an attribute,

something like per son. @ane, to allow attributes to be passed by reference. This would also allow static references like
Per son. @ane.

6.5.5. Static expressions

A static expression is atype, followed by an identifier, with an optional list of type arguments.

Stati cExpression: (TypeNanme TypeArgunents? ".")+ (Menber Nanme | TypeNane) TypeArgunents?
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A static expression is areference to a member of atype: an attribute, method, or member class.

The referenced member is determined by resolving the qualified reference as defined by §5.1.8 Qualified reference resolu-
tion. The qualified realization for the qualified reference is determined according to §3.7.6 Realizations.

The type argument list, if any, must conform, as defined by §3.6.1 Type arguments and type constraints, to the type para-
meter list of the qualified realization.

Unlike member expressions, a static expression does not have areceiver expression. All static expressions are callable ex-
pressions which accept an argument of the specified type.

A static expression must reference a statically typed declaration with no missing types, even within adynani ¢ block.

6.5.6. Static value references

A static value reference is a static expression that references an attribute declaration.

Li st <Anyt hi ng>. si ze

The type of a static value reference expression for an attribute whose realization is of type X, and with qualifying type T, is
X(T).

A value declaration is never generic, so a static value reference never ends in atype argument list.

6.5.7. Static callable references

A static callable reference is a static expression that references something—a method or member class—that can be in-
voked or instantiated.

List<String>.filter
I t er abl e<l nt eger >. map<Stri ng>

The type of a static callable reference expression for a method or member class whose realization has callable type c, and
with qualifying type T,isc(T) .

If acallable reference expression refersto a generic declaration, it must end in an explicit type argument list.

6.6. Invocation expressions

A callable expression—any expression of type cal | abl e—is invokable. An invocation consists of an invoked expression,
together with an argument list and, optionally, an explicit type argument list.

I nvocation: Primary Argunents

The invoked expression must be of type cal | abl e<R, P> for some types R and P. Then the type of the invocation expres-
sionissimply R.

If the invoked expression has no type, and occurs within a dynani ¢ block, then the whole invocation expression has no
type, and the argument list is not type-checked at compile time, unlessit isadirect invocation expression.

An invocation expression must specify arguments for parameters of the callable object, either as a positional argument list,
or as anamed argument list.

Argunents: Positional Argunments | NanedArgunents

Every argument list has a type, as specified below in §6.6.7 Positional argument lists and §6.6.8 Named argument lists. If
an invocation is formed from a callable expression of type exactly cal | abl e<R, P> and an argument list of type A, then A
must be a subtype of p.

TODO: should we support an infix-operator-style syntax for method invocation like string split *,;".contains? This
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is especially nice for conceptually symmetric operationslikea xor b, or when the argument is an anonymous function like
peopl e map (Person p)=>p.firstName+p. | ast Nane.

6.6.1. Direct invocations

Any invocation expression where the invoked expression is a callable reference expression is called a direct invocation ex-
pression of the function or classto which the callable reference refers.

TODO: Should we consider x{y=1; }{z=2;} alegal direct invocation if x has multiple parameter lists?

In adirect invocation expression:;

» the compiler has one item of additional information about the schema of the method or class that is not reified by the
cal | abl e interface: the names of the parameters of the function or class, and therefore named arguments may be used,
and

* type argument inference is possible, as defined in §3.6.3 Type argument inference, since the compiler has access to the
type parameters and constraints of the function or class.

If an invocation expression has a named argument list, it must be a direct invocation.

The type of adirect invocation expression is the return type of the realization of the function, or the type of the realization
of the class, asdefined in §3.7.6 Realizations.

If the function has no return type, and occurs within a dynani ¢ block, then the whole direct invocation expression has no
type.

In adirect invocation expression of a function or class, the restriction above on the argument list type is equivalent to the
following requirements. Given the parameter list of the realization of the function or class, and the arguments of the direct
invocation:

« for each required parameter, an argument must be given,

« for each defaulted parameter, an argument may optionally be given,

« if the parameter list has avariadic parameter of type T+, one or more arguments must be given,

« if the parameter list has a variadic parameter of type T+, one or more arguments may optionally be given,
¢ no additional arguments may be given,

« for arequired or defaulted parameter of type T, the type of the corresponding argument expression must be assignable
toT, and

« for avariadic parameter of type T or T+, the type of every corresponding argument expression must be assignable to T.

Furthermore, if type argument are inferred, then the inferred type arguments must conform, as defined by §3.6.1 Type ar-
guments and type constraints, to the type parameter list of the realization of the function or class.

If an argument expression has no type, or if its parameter has no type, and the invocation occurs within a dynani ¢ block,
then the argument is not type-checked at compile time.

An invocation expression that does not occur within any dynani ¢ block may not assign an argument to a value parameter
with no type.

6.6.2. Default arguments

When no argument is assigned to a defaulted parameter by the caller, the default argument defined by the parameter de-
claration of the realization, as defined by §3.6.1 Type arguments and type constraints, of the function or classis used. The
default argument expression is evaluated every time the method is invoked with no argument specified for the defaulted
parameter.

This class:
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shared class Counter(lnteger initial Count=0) { ... }

May beinstantiated using any of the following invocations:

Counter ()
Count er (1)
Counter {}

Counter { initial Count=10; }

6.6.3. The type of a list of arguments

A list of arguments may be formed from:

< any number of listed arguments, optionally followed by either
e aspread argument, or
e acomprehension.

Argurent Li st: ((ListedArgument ",")* (ListedArgunment | SpreadArgunent | Conprehension))?

Every such list of arguments has a type, which captures the types of the individual arguments in the list. This typeis al-
ways a subtype of Anyt hi ng[] . The type of an empty list of argumentsis[] .

6.6.4. Listed arguments
A listed argument is an expression.

Li st edAr gunent : Expressi on

If alisted argument is an expression of type T, and a list of arguments has type P with principal instantiation Sequen-
tial <>, then the type of a new argument list formed by prepending the expression to the first parameter list is
Tupl e<T| Y, T, P>.

6.6.5. Spread arguments
A spread argument is an expression prefixed by the spread operator *.

SpreadAr gunent: "* "Expression

The expression type T must have the principal instantiation { x*} for some type X. We form the sequential type of a spread
argument as follows:

< if the expression type T is an invariant subtype of x| ], for some type X then the sequential type of the spread argument
isT, or, if not,

« if the expression type T is an invariant subtype of { x+}, for some type X then the sequentia type of the spread argument
iS[ X+], or, otherwise,

« theexpression type T is an invariant subtype of { x*}, for some type X and the sequential type of the spread argument is
X1,

When a spread argument with an expression type not assignable to Anyt hi ng[] is evaluated, the elements of the iterable
automatically are packaged into a sequence.

Note: the spread "operator" is not truly an operator in the sense of §6.8 Operators, and so a spread argument is not an ex-
presson. An expression, when evaluated, produces a single value. The spread operator produces multiple values. It is
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therefore more correct to view the spread operator as simply part of the syntax of an argument list.

Thetype of alist of arguments containing only a spread argument of sequential type sissimply s.

6.6.6. Comprehensions

A comprehension accepts one or more streams of values and produces a new stream of values. Any instance of I t erabl e
is considered a stream of values. The comprehension has two or more clauses:

e A for clause specifies a source stream and an iteration variable, as defined in §85.3.2 Iteration variables, representing
the values produced by the stream.

* Anif clause specifies a condition list, as defined in 85.3.3 Control structure conditions, used to filter the values pro-
duced by the source stream or streams.

¢ An expression clause produces the values of the resulting stream.

Every comprehension begins with af or clause, and ends with an expression clause. There may be any number of interven-
ingfor orif clauses. Each clause in the comprehension is considered a child of the clause that immediately precedesiit.

Conpr ehensi on: For Conpr ehensi onCl ause

For Conpr ehensi onC ause: “"for" Forlterator ConprehensionC ause

| f Conpr ehensi onCl ause: "if" ConditionList ConprehensionC ause

Conpr ehensi onCl ause: For Conpr ehensi onCl ause | | f Conprehensi onCl ause | Expression

An expression that occurs in a child clause may refer to iteration variables and condition variables declared by parent
clauses. The types of such variables are specified in §5.3 Control structures and assertions.

Note: each child clause can be viewed as a body nested inside the parent clause. The scoping rules for variables declared
by comprehension clauses reflects this model.

The type of alist of arguments containing only a comprehension is[ T*] where T is the type of the expression which ter-
minates the comprehension, or [ T+] if there are no i f clauses, and if every for clause has an iterated expression of
nonempty type.

An comprehension occurring in an ext ends clause may not contain areference to avariable value.

Note: a comprehension, like a spread argument, is not considered an expression. An expression, when eval uated, produces
a single value. A comprehension, produces multiple values, like a spread argument, or like a series of listed arguments.
Therefore, a comprehension may only appear in an argument list or an enumeration expression. This is however, no limit-
ation; we can simply wrap the comprehension in bracesin order to get an expression of type { T+}, or in brackets to get an
expression of type [ T+] .

TODO: properly define how expressions with no type occurring in a dynani ¢ block affect comprehensions.

6.6.7. Positional argument lists
When invocation arguments are listed positionally, the argument list is enclosed in parentheses.

Posi ti onal Argunments: " (" ArgumentlList ")"
The type of the positional argument list is the type of thelist of argumentsit contains.
6.6.8. Named argument lists

When invocation arguments are listed by name, the argument list is enclosed in braces.

NanmedAr gunent s: "{" NanmedArgunment* ArgunentList "}"
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Named arguments may be listed in a different order to the corresponding parameters.

Each named argument in a named argument list is either:

e an anonymous argument—an expression, with no parameter name explicitly specified,

» agpecified argument—a specification statement where name of the value of function being specified is interpreted as
the name of a parameter, or

e aninline getter, function, or anonymous class declaration, whose name is interpreted as the name of a parameter.

NanmedAr gunent :  AnonynousAr gunent | Speci fi edArgunent | | nlineDeclarati onArgunent

Additionally, a named argument list has an ordinary list of arguments, which may be empty. This argument list is inter-
preted as asingle argument to a parameter of type I terabl e.

{ initial Capacity=2; "hello", "world" }
{ initial Capacity=peopl e.size; |oadFactor=0.8; for (p in people) p.nanme->p }

Note: in a future release of the language, we would like to be able to assign a local hame to an anonymous argument or
listed argument, allowing it to be referenced later in the argument list. We might consider this a kind of "let" expression,

perhaps.

Given a parameter list, and a named argument list, we may attempt to construct an equivalent positional argument list as
follows:

¢ Taking each argument in the named argument list in turn, on the order they occur lexically:

» if theargument is anonymous, assign it to the first unassigned parameter of the parameter list, or
» if theargument is named, assign it to the parameter with that name in the parameter list.

If for any argument, there is no unassigned parameter, no parameter with the given name, or the parameter with the
given name has already been assigned an argument, construction of the positional argument list fails, and the invoca
tion is not well-typed.

« Next, if the parameter list has an unassigned parameter of type exactly | t er abl e<T, N> for some types T and N, then an
iterable enumeration expression, as defined in §6.6.12 Iterable and tuple enumeration, is formed from the ordinary list
of arguments, and assigned to that parameter.

If thereis no such parameter, and the the ordinary list of arguments is nonempty, then construction of the positional ar-
gument list fails, and the invocation is not well-typed.

« Finaly, we assign each unassigned defaulted parameter its default argument.
The resulting equivalent positional argument list is formed by ordering the arguments according to the position of their
corresponding parameters in the parameter list, and then replacing any inline value, function, or object declarations with a

reference to the declaration.

The type of a named argument list is the type of the equivalent positional argument list.

6.6.9. Anonymous arguments
An anonymous argument is just an expression followed by a semicolon.

AnonynousAr gunent : Expression ";"

The type of the argument is the type of the expression.

Head { title="Hello"; };
Body {

Project Ceylon: Final release draft (1.0) 91



Expressions

Div { "Hello " nane "!" };

6.6.10. Specified arguments

A specified argument is a value specification statement or lazy specification statement, as defined in §5.2.3 Specification
statements, where the value reference or callable reference is treated as the name of a parameter of the invoked function or
classinstead of using the usual rules for resolving unqualified names.

Speci fi edArgunment : Speci fication

» |If aspecified argument is a value specification statement, itstype is the type of the specified expression.

« |If aspecified argument is alazy specification statement with no parameter lists, its type is the type of the specified ex-
pression.

e Otherwisg, if it isalazy specification statement with a parameter list, its type is the callable type formed from the type
of the expression, interpreted as a function return type, and the types of its parameter lists, according to §4.7.1 Callable

type of afunction.

Note: there is an ambiguity here between assignment expressions and specified arguments. This ambiguity is resolved in
favor of interpreting the argument as a specified argument. Therefore an anonymous argument in a named argument list
may not be an assignment expression.

product = get Product (id);
quantity = 1;

by(Val ue x, Value y) => x<=>y;

6.6.11. Inline declaration arguments
An inline declaration argument defines a getter, function, or anonymous class, and assignsit to a parameter.

Val ueArgunent | FunctionArgunent | Object Argunent

An inline getter argument is a streamlined getter declaration, as defined in §4.8.2 Getters. The type of the argument is the
declared or inferred type of the getter.

Val ueAr gurment : Val ueHeader (Bl ock | (Specifier | LazySpecifier) ";")

An inline function argument is a streamlined function declaration, as defined in 84.7 Functions. The type of the argument
isthe callable type of the function, as defined by §4.7.1 Callable type of afunction.

Functi onArgunent: Functi onHeader (Block | LazySpecifier ";")

An inline anonymous class argument is a streamlined anonymous class declaration, as defined in §4.5.7 Anonymous
classes. The type of the argument is the anonymous class type.

bj ect Argunent: Obj ect Header O assBody

A named argument may not have type parameters or annotations.

{

description = "Total ";
val ue anount {
vari able Float total = 0.0;
for (Itemitemin itens) {
sum += item anount;

return total;
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}
}
{
| abel = "Say Hell o";
void onCick() {
say("Hello!");
}
{
function by(Value x, Value y) => x<=>y;
}
{
obj ect iterator
satisfies Iterator<Order> {
vari abl e val ue done = fal se;
shared actual Order|Finished next() {
i f (done) {
return finished;
el se {
done=true;
return order;
}
}
}
}

6.6.12. Iterable and tuple enumeration

An enumeration expression is an abbreviation for tuple and iterable object instantiation. Iterable enumerations are delim-
ited using braces. Tuple enumerations are delimited by brackets.

Iterable: "{" ArgunentList "}"
Tuple: "[" ArgumentList "]"
Thetype of an iterable enumeration expression is:

e Enpty if there are no argument expressions, or
e Iterabl e<U, Not hi ng> where U, the argument expression list is an invariant suptype of U] .
The type of atuple enumeration expression is the type of the list of arguments it contains.
{String+} ={ "hello", "world" };
[1 none = [];
[Float, Float] xy =[x, Yy];
[Float, Float, String*] xy =[x, y, *l|abels];

Every argument expression must have atype, even if the enumeration expression occursin adynani ¢ block.

6.6.13. Dynamic enumerations

A dynamic enumeration expression creates a new object with no class by enumerating its members, allowing interopera-
tion with dynamically typed native code.

Dynami cVal ue: "val ue" NanedArgunents

A dynamic enumeration expression has no type.
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Any argument names may be specified in the named argument list.
A dynamic enumeration expression must occur inside adynani ¢ block.

The semantics of this construct are platform-dependent and beyond the scope of this specification.

6.7. Conditional expressions and anonymous class expressions

A conditional expression resembles a control structure but is part of the expression syntax, and evaluates to avalue.

Aninline classis an anonymous class defined within an expression.

6.7.1. Inline conditional expressions
We plan to support inlinei f/ t hen/ el se conditional expressions, for example:

Integer port = if (exists setting = process. propertyVal ue("port"))
t hen parsel nteger(setting) el se 8080;

Note that this is more powerful than the t hen and el se operators because it allows all kinds of conditions, not only
boolean conditions.

Should we also support:

e inlineswit ch/ case/ el se conditional expressions, or even
e inlinetry/ cat ch exceptional conditions?
For example:

Fl oat eval uated => switch (expr)
case (is Literal) expr.integer
case (is Plus) expr.left.evaluated + expr.right.eval uated
case (is Tinmes) expr.left.evaluated * expr.right.eval uated;

6.7.2. Let expressions

Should we support let expressions, possibly reusing the keyword gi ven?

given (dist = sqrt(x"2+y”*2)) [x/dist,y/dist]

6.7.3. Inline anonymous class expressions
Should we support inline obj ect declarations, for example:

iterator => object satisfies Iterabl e<Nothing> { next() => finished; }

Or, alternatively, a kind of named argument ""instantiation" syntax for interfaces and abstract classes:

iterator => Iterable { next() => finished; }

Thefirst option is more flexible, but also more verbose. The second is streamlined for the common case and might even be
able to do type argument inference as shown here.

If we go with the first option, should we support inline cl ass declarations? This would be like an inline obj ect and an an-
onymous function rolled into one. We could even support cl ass arguments in named argument lists.

6.8. Operators

Operators are syntactic shorthand for more complex expressions involving invocation, evaluation, or instantiation. Thereis
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no support for user-defined operator overloading:

* new operator symbols may not be defined outside of the operators specified below, and
« thedefinition of the operators specified below may not be changed or overloaded.

However, many of the operators below are defined in terms of def aul t or f or mal methods or attributes. So, within well-
defined limits a concrete implementation may customize the behavior of an operator. This approach is called operator
polymor phism.

Some examples:

Float z = x * y + 1.0;

even = n %2 ==

++count ;

Integer j = i++;

if (x>100]] x<0) { ...}

User user = users[userld] else guest;
List<ltenr firstPage = results[0..20];
for (nin O:length) { ... }

if (char in"A.."Z) { ...}

String[] nanmes = peopl e*. nane;
this.total += itemprice * itemquantity;
Fl oat vol = |ength”3

Vector scaled = scale ** vector;

map. def i ne( per son. nane- >per son) ;

if (!docunment.internal || user is Enployee) { ... }

6.8.1. Operator precedence

There are 18 distinct operator precedence levels, but these levels are arranged into layers in order to make them easier to
predict.

e Operatorsin layer 1 produce, transform, and combine values.

e Operatorsin layer 2 compare or predicate values, producing aBool ean result.

e Operatorsin layer 3 are logical operators that operate upon Bool ean arguments to produce a Bool ean value.
e Operatorsin layer 4 perform assignment and conditional evaluation.

Within each layer, postfix operators have a higher precedence than prefix operators, and prefix operators have a higher
precedence than binary operators.

There is a single exception to this principal: the binary exponentiation operator ~ has a higher precedence than the prefix
operators + and - . The reason for thisis that the following expressions should be equivalent:
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- X"2 // means - (x"2)
0 - x"2 //means 0 - (x"2)

This table defines the relative precedence of the various operators, from highest to lowest, along with associativity rules:

Table6.1.
Operations Operators Type Assqciativ-
ity
Layer 1
Member invocation and selection, index, span, 2,000,010 Binary / ternary / Left
postfix increment, postfix decrement: [...],++-- N-ary / unary
postfix
Prefix increment, prefix decrement: - - Unary prefix Right
Exponentiation: A Binary Right
Negation: +, - Unary prefix Right
Set intersection: & Binary Left
Set union and complement: |, ~ Binary Left
Multiplication, division, remainder: * 1, % Binary Left
Scale: ** Binary Right
Addition, subtraction: +, - Binary Left
Range and entry construction: S, e Binary None
Layer 2
Existence, emptiness: exi st's, nonenpty Unary postfix None
Comparison, containment, assignability, inher- | <=>, <, >, <=,>=,in,is,of,satis- | Binary (andtern- None
itance: fies ary)
Equality, identity: ==, 1=, === Binary None
Layer 3
Logical not: ! Unary prefix Right
Logica and: && Binary Left
Logica or: [ | Binary Left
Layer 4
Conditionals: then, el se Binary Left
Assignment: =, 4=, -5,%=2, 1 =, %, &=, | =, "=, ~=, Binary Right
&&=, || =

It'simportant to be aware that in Ceylon, compared to other C-like languages, the logical not operator ! hasavery low pre-
cedence. The following expressions are equivalent:

Ix.y == 0.0 //neans !(x.y == 0.0)

x.y '=0.0
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6.8.2. Operator definition

The following tables define the semantics of the Ceylon operators. There are six basic operators which do not have a defin-

ition in terms of other operators or invocations:

» the member selection operator . separates the receiver expression and member name in a member expression, as

defined above in §6.5.2 Member expressions,

< theargument specification operators () and {} specify the argument list of an invocation, as defined in §6.6 Invocation

expressions and §8.4.4 Invocation,

« the assignment operator = assigns a new value to a variable and returns the new value after assignment, as defined in

88.4.3 Assignment,

» the identity operator === evaluates to t r ue if its argument expressions evaluate to references to the same object, as

defined in 88.1 Object instances, identity, and reference passing, or to f al se otherwise,

» the assignability operator i s evaluatesto t r ue if its argument expression evauates to an instance of a class, as defined
in §8.1 Object instances, identity. and reference passing, that is a subtype of the specified type, or to f al se otherwise,

and

« the coverage operator of narrows or widens the type of an expression to any specified type that covers the expression

type, as defined by §3.4.1 Coverage, without affecting the value of the expression.

All other operators are defined below in terms of other operators and/or invocations.
In the tables, the following pseudo-code is used, which is not legal Ceylon syntax:
First,

if (b) then x else y / | pseudocode
means the value of resul t after execution of the following:

Xresult; if (b) { result=x; } else { result=y; }
Second,

let t=x iny / | pseudocode

means the value of resul t after execution of the following:

Xt =x; Yresult=y;

6.8.3. Basic invocation and assignment operators

These operators support method invocation and attribute eval uation and assignment.

Table6.2.
Example Name Definition LHStype RHStype Return type
Invocation
| hs. menber member X amember of X, T
of typeT
I hs(x,y,z) or invoke Cal | abl e argument list of T
| hs{a=x; b=y;} <T, P> typeP
Assignment
lhs = rhs assign variable of type X X
X
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Example Name Definition LHStype RHStype Return type
Coverage
I hs of Type of X alitera typeT T
that covers x
6.8.4. Equality and comparison operators
These operators compare values for equality, order, magnitude, or membership, producing boolean values.
Table6.3.
Example Name Definition LHStype RHStype Return type
Equality and identity
I hs === rhs identical i dentical (1 hs, rhs) X given X Y given Y Bool ean
satisfies satisfies
I dentifiable Identifiable
where X&Y is not
Not hi ng
Il hs == rhs equal | hs. equal s(rhs) bj ect oj ect Bool ean
lhs = rhs not equal 'l hs. equal s(rhs) hj ect oj ect Bool ean
Comparison
lhs <=> rhs compare | hs. conpare(r hs) Conpar abl e T Conpari son
<T>
lhs < rhs smaller | hs. conpar e(rhs)==snal | er Conpar abl e T Bool ean
<T>
lhs > rhs larger | hs. conpar e(r hs) ==l ar ger Conpar abl e T Bool ean
<T>
I hs <= rhs small as | hs. conpare(rhs)! =l arger Conpar abl e T Bool ean
<T>
lhs >= rhs large as | hs. conpare(rhs)!=snall er Conpar abl e T Bool ean
<T>
Containment
lhs in rhs in let x=lhs in vj ect Cat egory Bool ean
rhs. cont ai ns(x)
Assignability
rhs is Type is any typewhich  any literal type Bool ean
is not a subtype T

of T, whosein-
tersection with
T isnot Not hi ng

TODO: Should we have allow the operators <= and >= to handle partial orders? A particular usecase is Set comparison.

A bounded comparison is an abbreviation for two binary comparisons:

e | <x<u Means x>l

* | <=x<u Means x>=I

&& x<u,

&& x<u,
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e | <x<=u meansx>l && x<=u, and

e | <=x<=u Mmeansx>=l && x<=u

for expressions| , u, and x.

These abbreviations have the same precedence as the binary < and <= operators, and, like the binary forms, are not associ-

ative.

6.8.5. Logical operators

These are the usual logical operations for boolean values.

Table6.4.
Example Name Definition LHStype RHStype Return type
Logical operators
I'rhs not if (rhs) false else true Bool ean Bool ean
Ihs || rhs conditional if (Ihs) true else rhs Bool ean Bool ean Bool ean
or
I hs & rhs conditional | if (lhs) rhs else false Bool ean Bool ean Bool ean
and
Logical assignment
Ihs ||= rhs conditional if (Ihs) true else variable of type Bool ean Bool ean
or | hs=rhs Bool ean
I hs &&= rhs conditional if (Ihs) Ihs=rhs else variable of type Bool ean Bool ean
and fal se Bool ean
6.8.6. Operators for handling null values
These operators make it easy to work with optional expressions.
Table6.5.
Example Name Definition LHStype RHStype Return type
Existence
I hs exists exists if (exists Ihs) true else anytypewhose Bool ean
fal se intersections
with obj ect and
Nul | are not
Not hi ng
I hs nonenpty nonempty if (nonenpty |Ihs) true any subtype of Bool ean
el se fal se Anything[]?
whose intersec-
tionswith[]
and [ Not hi ng+]
are not Not hi ng
Nullsafe invocation
| hs?. menber nullsafe at- if (exists |hs) X? an attribute of T2
tribute | hs. menber el se nul | type T of X
| hs?. menber nullsafe X? amethod of Cal | abl e
99
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Example Name Definition LHStype RHStype Return type
method calabletype <T?, P>
Cal | abl e
<T, P> of X

6.8.7. Correspondence and sequence operators

These operators provide a simplified syntax for accessing values of a Cor r espondence, and for joining and obtaining sub-
ranges of Sequences.

Table6.6.
Example Name Definition LHStype RHStype Return type
Keyed item access
| hs[i ndex] lookup | hs.iten(index) Cor r espond- X \
ence<X, Y>
Spans and segments
I hs[from|ength segment | hs. segnment (from | engt h) Ranged<X, Y> X, I nt eger Y
]

I hs[from.to] Span | hs. span(fromto) Ranged<X, Y> X, X Y

lhs[from..] upper span | hs. spanFron{from Ranged<X, Y> X Y

I hs[...to] lower span I hs. spanTo(t o) Ranged<X, Y> X Y

Soread invocation
| hs*. nenber spread at- [ for (X x in |Ihs) X1 attribite of x of T[]
tribute x. menber | typeT
| hs*. menber spread X1 method of x of Cal | abl e
method callable type <T[],P>
Cal | abl e
<T, P>
Soread multiplication
I hs ** rhs scae rhs. scal e(l hs) Y Scal abl e<X, Y> X

There are two special cases related to sequences. A type X is a sequence typeif X is a subtype of Sequenti al <Anyt hi ng>.

For any sequence type X and integer n, we can form the nth tail type, xn, of x asfollows:
o foreveryi<=0,x isx, and
« foreveryi>0,if Xi hastheprincipa instantiation Tupl e<Ui , Fi, Yi > then X(i +1) isYi, or, otherwise, X(i +1) isXi .

For any sequence type X and integer n, we can form the nth element type, En, of X asfollows:

* if xn hasthe principal instantiation Tupl e<Un, Fn, Yn> then En iSFn, or, otherwise, xn has the principa instantiation Se-
quenti al <Fn>and En iSFn?.

Then the two special cases are:

* Thetype of an expression of formx[i...] wherex isof tuple type X and n isan integer literal is xn.

e Thetype of an expression of formx[i] wherex isof tupletype x and n isan integer literal is En.
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6.8.8. Operators for creating objects

These operators simplify the syntax for instantiating certain commonly used built-in types.

Table6.7.
Example Name Definition LHStype RHStype Return type
Range and entry constructors
lhs..rhs spanned Range( | hs, rhs) T given T T Range<T>
range satisfies O-
dinal & Com
par abl e<T>
I hs:rhs segmented  if (I hs<=0) [] el se TODO T given T I nt eger T[]
range satisfies O-
dinal & Com
par abl e<T>
I hs->rhs entry Entry(l hs, rhs) U given U V given V Entry<uU, v>
satisfies Cb- | satisfies Ob-
j ect j ect
6.8.9. Conditional operators
Two special operators allow emulation of the famous ternary operator of C-like languages.
Table6.8.
Example Name Definition LHStype RHStype Return type
Conditionals
I hs then rhs then if (Ihs) then rhs el se Bool ean T given T T?
nul | satisfies Ob-
j ect
I hs else rhs else if (exists lhs) then I hs uUsuchthat null \Y U&Ohj ect | V
el se rhs is U
6.8.10. Arithmetic operators
These are the usual mathematical operations for all kinds of numeric values.
Table6.9.
Example Name Definition LHStype RHStype Return type
Increment, decrement
++r hs successor rhs=rhs. successor variable of type T
Ordi nal <T>
--rhs predecessor rhs=rhs. predecessor variable of type T
Ordi nal <T>
| hs++ increment (++l hs) . predecessor variable of type T
Ordi nal <T>
| hs-- decrement (--1hs).successor variable of type T
Ordi nal <T>
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Example Name Definition LHStype RHStype Return type
Numeric operators
+rhs rhs. positiveVal ue I nvertabl e |
<l >
-rhs negation rhs. negativeVal ue Invertable I
<| >
Il hs + rhs sum I hs. plus(rhs) Sumabl e<X> X X
lhs - rhs difference | hs. mi nus(rhs) Subtractabl e X X
<X>
Ihs * rhs product | hs. times(rhs) Nuneri c<X> X X
Ihs / rhs quotient | hs. di vi ded(rhs) Nurer i c<X> X X
Ihs %rhs remainder | hs. remai nder (r hs) I nt egral <X> X X
Il hs N rhs power | hs. power (r hs) Exponenti abl e Y X
<X, Y>
Numeric assignment
I hs += rhs add I hs=I hs. pl us(rhs) variable of type N N
Sumrabl e<N>
Ihs -=rhs subtract I hs=I hs. mi nus(rhs) variable of type N N
Subt ract abl e
<N>
Ihs *= rhs multiply I hs=l hs. ti mes(rhs) variable of type N N
Nurrer i c<N>
Ihs /= rhs divide I hs=I hs. di vi ded(r hs) variable of type N N
Nuneri c<N>
Ihs % rhs remainder | hs=I hs. remai nder (r hs) variable of type N N

I nt egral <N>

Arithmetic operators automatically widen from | nt eger to Fl oat when necessary. If one operand expression is of static
type| nt eger , and the other is of type Fi oat , the operand of type I nt eger iswidened to aFl oat in order to make the oper-

ator expression well-typed. Widening is performed by evaluating the attribute f | oat defined by I nt eger.

Note: this is the only circumstance in the language where implicit type conversion occurs. In fact, it is more correct to
view this behavior as an instance of operator overloading than as an implicit type conversion. Implicit widening does not
occur when an expression of type | nt eger is merely assigned to the type Fi oat , since such behavior would result in ambi-

guities when generics comeinto play.

6.8.11. Set operators

These operators provide traditional mathematical operations for sets.

Table 6.10.
Example Name Definition LHStype RHStype Return type
Set operators
lhs | rhs union I hs. uni on(rhs) Set <X> Set <Y> Set <X| Y>
Ihs & rhs intersection I hs.intersection(rhs) Set <X> Set <Y> Set <X&Y>
Il hs ~ rhs comple | hs. conpl ement (r hs) Set <X> Set <Obj ect > Set <X>
ment
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Example Name Definition LHStype RHStype Return type

Set assignment

lhs |=rhs union | hs=l hs|rhs variable of type Set <X> Set <X>
Set <X>

Ilhs & rhs intersection | hs=I hs&r hs variable of type = Set <Obj ect > Set <X>
Set <X>

Ihs ~= rhs comple- | hs=I hs~r hs variable of type = Set <vj ect > Set <X>
ment Set <X>

6.9. Operator-style member and invocation expressions

An member expression or a method invocation with a single positional argument may be written using an operator-style
syntax. This syntax has an extremely low precedence, just above the precedence of the assignment operator, is not associ-
ative, and does not form alegal expression statement.

0..nmax by step

In an operator-style invocation expression, the invoked method name and optional type arguments occur in an infix loca-
tion between two expressions. The first expression is interpreted as the receiver expression, and the second expression is
interpreted as a positional argument to the first parameter of the method.

Operat orl nvocati on: Val ueExpressi on Menber Name TypeAr gunent s? Expressi on

The semantics of this syntax are identical to ordinary invocation expressions, as defined in 86.6 Invocation expressions.

In an operator-style member expression, the member name and optional type arguments occur in a postfix location after an
expression. The expression is interpreted as the receiver expression.

Oper at or Menber Expr essi on: Val ueExpr essi on Menber Name TypeAr gunent s?

The semantics of this syntax are identical to ordinary member expression, as defined in §6.5.2 Member expressions.

TODO: Should we rather use this syntax as a sugar for invocation of a toplevel function?

6.10. Metamodel expressions

A metamodel expression is a reference to a type, a class, a function, or avalue. It evaluates to a metamodel object whose
static type captures the type itself, the callable type of the class, the callable type of the function, or the type of the value,
respectively.

Meta: TypeMeta | BaseMeta | Menmber Met a

A type metamodel expression isatype, as defined by §3.2 Types, surrounded by backticks.

TypeMeta: """ Type "*"

The type may or may not be areferenceto aclass or interface.

Cl ass<Per son, [ Nane] > personCl ass = " Person’;

I nterface<List<String>> stringListlnterface = "List<String>;
Uni onType<I nt eger | Fl oat > nunber Type = ~ Nunber " ;

Type<El ement > el enent Type = "El enent *;

A base metamodel expression is amember name, with an optional list of type arguments, surrounded by backticks.
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BaseMeta: "'" Menber Nane TypeArgunents? " "

A base metamodel expression is a reference to a value or function. The referenced declaration is determined according to
85.1.7 Unqualified reference resolution.

A member metamodel expression is atype, as defined by §3.2 Types, followed by a member name, with an optional list of
type arguments, surrounded by backticks.

Menber Meta: " " (QualifiedType| G oupedType) "." Menber Nane TypeArgunents? " "

A member metamodel expression is areference to an attribute or method of the type. The member is resolved as a member
of the type according to §5.1.8 Qualified reference resolution.

Funct i on<Fl oat, [ { Fl oat +}] > sunfuncti on = " sunxFl oat >";
Attribute<Person, String> personNaneAttribute = " Person. nane’;
Met hod<Per son, Anyt hi ng, [ Stri ng] > per sonSayMet hod = " Person. say;

Type argument inference is impossible in a metamodel expression, so type arguments must be explicitly provided for
every generic declaration.

6.10.1. Type of a metamodel expression

The type of ametamodel expression depends upon the kind of declaration referenced:

- for atoplevel value of typeR, thetypeisVval ue<r>,

» for atoplevel function of callable type cal | abl e<R, P>, thetypeisFuncti on<R, P>,

» foratoplevel classof calabletype cal | abl e<R, P>, thetypeisd ass<R, P>,

« foraclassnested in ablock of calabletype cal I abl e<R, P>, thetypeisd ass<R, Not hi ng>, and
« for atoplevel interface or interface nested in ablock of typeR, thetypeisi nter f ace<R>.

Furthermore, given amember of atypeT:

for an attribute of type R, thetypeisAttri but e<T, R>,

« for amethod of callabletype cal | abl e<R, P>, thetypeis Met hod<T, R, P>,

« for amember class of callabletype cal I abl e<R, P>, thetypeis Menber O ass<T, R, P>, and
« for anested interface of typeR, thetypeisMenber | nt er f ace<T, R>.

Finaly:

« forauniontypeT, thetypeis uni onType<T>,

e for anintersection type T, the typeisi nt ersecti onType<T>,
« for thetype Not hi ng, the typeis Type<Not hi ng>, and

« for atype parameter T, thetypeis Type<T>.

If atype alias occurs inside a typed metamodel expression, it is replaced by its definition, after substituting type argu-
ments, before determining the type of the metamodel expression.

6.11. Reference expressions
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A reference expression is areference to a program element and evaluates to a detyped metamodel of the program element.
Reference expressions are used primarily in annotations, especially the documentation annotations listed in §7.4.2 Docu-
mentation. A reference expression may refer to:

e aclass, interface, type dias, or type parameter,
« afunction or value, or
* apackage or module.

Dec: TypeDec | MenberDec | PackageDec | Mbdul eDec

6.11.1. Declaration references

A class reference expression, interface reference expression, alias reference expression, or type parameter reference ex-
pression is a series of initial uppercase identifiers, with the keyword cl ass, i nterf ace, al i as, Or gi ven, respectively, sur-
rounded by backticks.

TypeDec: " " ("class" | "interface" | "alias" | "given") (TypeNane ".")* TypeNane " "

A value reference expression or function reference expression is an initial lowercase identifier, qualified by alist of initial
uppercase identifiers, with the keyword val ue or f unct i on, surrounded by backticks.

Menber Dec: "*" ("value" | "function") (TypeNanme ".")* Menber Name """

A reference expression is a reference to a declaration. The referenced declaration is determined according to 85.1.7 Un-
gualified reference resolution and 85.1.8 Qualified reference resolution. The kind of the referenced declaration must match
the kind of reference indicated by the keyword.

Cl assDecl arati on personCl ass = “class Person’;

InterfaceDecl aration stringlListlinterface = “interface List’;
Al i asDecl aration nunberAlias = "alias Nunber’;

TypePar anet er el enment TypeParaneter = "given El enent”;

Val ueDecl arati on personNaneAttri bute = "“val ue Person. nane’;
Funct i onDecl ar ati on personSayMet hod = “function Person. say;

6.11.2. Package and module references

A package reference expression is a package name, as defined by 84.1.2 Packages, with the keyword package, surrounded
by backticks.

PackageDec: "'" "package" Full PackageNane "™"

The package name must refer to a package from which an i nport statement in the same compilation unit may import de-
clarations, as defined by §4.2 Imports.

Package nodel Package = "~ package ceyl on. | anguage. net a. nodel " ;

A module reference expression is a module name, as defined by §9.3.1 Module names and version identifiers, with the
keyword nodul e, surrounded by backticks.

Modul eDec: " " "nodul e* Ful | PackageName "™ "

The module name must refer to the module to which the compilation unit belongs, as specified by §9.2 Source layout, or to
amodule imported by the module to which the compilation unit belongs, as defined by §9.3.12 Module descriptors.
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Modul e | anguageMbdul e = “nodul e ceyl on. | anguage”;

6.11.3. Type of a reference expression

The type of areference expression depends upon the kind of program element referenced:

« for amodule, the typeis Mdul e,

» for apackage, thetypeisPackage,

« for avalue, thetypeisval ueDecl ar ati on,

« for afunction, thetypeisFuncti onDecl ar ati on,

» for atype parameter, the type is TypePar anet er ,

« for atype alias declared using the keyword al i as, thetypeisAl i asDecl ar ati on,
e foraclassor classdlias, thetypeisd assDecl ar ati on, and

« for aninterface or interface alias, the typeis| nt er f aceDecl ar at i on.
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Annotations alow information to be attached to a declaration or assertion, and recovered at runtime via the use of the
Ceylon metamodel. Annotations are used to specify:

« information used by the compiler while typechecking the program,
¢ APl documentation for the documentation compiler,
» seridization of aclass, and

» information needed by generic frameworks and libraries.

7.1. Annotations of program elements

Annotations occur at the very beginning of a declaration or assertion, in an annotation list.

"The user |login action"
by ("Gavin King",

" Andr ew Hal ey")
throws (" class Dat abaseException’,

"if database access fails")

see (" function LogoutAction. | ogout’)
scope (session)
action { description="Log In"; url="/login"; }
shar ed deprecat ed

7.1.1. Annotation lists

An annotation is an initial lowercase identifier, optionally followed by an argument list.

Annot ati on: Menber Nane Argunents?

The annotation name is a reference to an annotation constructor, resolved according to 85.1.7 Unqualified reference resol-
ution.

A list of annotations does not require punctuation between the individual annotations in the list. An annotation list may be-
ginwith astring literal, in which case it isinterpreted as the argument of adoc annotation.

Annot ations: StringLiteral ? Annotati on*

Every annotation is an invocation expression, as defined by §6.6 Invocation expressions, of an annotation constructor. The
annotation name is interpreted as a base expression, as defined in §86.5.1 Base expressions.

7.1.2. Annotation arguments

For an annotation with no arguments, the argument list may be omitted, in which case the annotation is interpreted as hav-
ing an empty positional argument list. Otherwise, the annotation argument list may be specified using one of two forms:

e Using apositional argument list, as defined in 86.6.7 Positional argument lists:

doc ("the nanme") String nane;

« Using anamed argument list, as defined in §6.6.8 Named argument lists:

doc { description="the nanme"; } String nane;

Asa special case, the name of the doc annotation and the parenthesis around its argument may be ommitted if it is the first
annotation in an annotation list.

"the nane" String nane;
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Operator expressions, member expressions, self references, anonymous functions, comprehensions, and string templates
are not permitted in an annotation argument. Every base expression in an annotation argument must be a value reference to
an anonyous class instance of an enumerated type, or must occur in adirect instantiation expression for an annotation type.

A named argument to an annotation may not be an inline function, value, or anonymous class.

7.2. Annotation definition

Annotations are typesafe.

< Anannotation constructor defines the schema of an annotation as it appears at a program element.

« An annotation type defines constraints upon which program elements can bear the annotation, and an APl for access-
ing the information carried by an annotation.

7.2.1. Annotation constructors

An annotation constructor is atoplevel function that defines an annotation schema. An annotation constructor must be an-
notated annot at i on. An annotation constructor may not declare type parameters.

Each parameter of an annotation constructor must have one of the following types:

* Integer, Fl oat, Character,Or String,

e an enumerated type whose cases are al anonymous classes, such as Bool ean,

e asubtype of Decl arati on inceyl on. | anguage. met a. decl ar at i on,

e an annotation type,

e {7} or[T*] whereT isalega annotation constructor parameter type, or

« any tuple type whose element types are legal annotation constructor parameter types.
A parameter of an annotation constructor may be variadic.

An annotation constructor must simply instantiate and return an instance of an annotation type. The body of an annotation
constructor may not contain multiple statements. Operator expressions, member expressions, self references, anonymous
functions, comprehensions, and string templates are not permitted in the definition of an annotation constructor. Every
base expression in the body of an annotation constructor must be a reference to a parameter of the annotation constructor
or to an anonyous class instance of an enumerated type, or must occur in a direct instantiation expression for an annotation

type.

A named argument appearing in the definition of an annotation constructor may not be an inline function, value, or an-
onymous class.

shared annot ati on Scope scope(ScopeType s) => Scope(s);
shared annot ati on Todo todo(String text) => Todo(text);

An annotation constructor parameter may have a default argument, which must be alegal annotation argument.

The return type of an annotation constructor must be a constrained annotation type, as defined below in §7.2.3 Constrained
annotation types.

A user-defined annotation constructor may not return the same annotation type as one of the modifiers listed below in
§7.4.1 Declaration modifiers.

Note: in future releases of the language we will let an annotation constructor return a sequence or tuple of annotation type
instances.
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7.2.2. Annotation types

Annotation constructors produce instances of annotation types. An annotation type is a class annotated annot ati on. An
annotation type may not be a generic type with type parameters. An annotation type must have an empty initializer section.

Note: currently every annotation type must beafinal classwhich directly extends Basi c in ceyl on. | anguage.

Each initializer parameter of an annotation type must have one of the following types:

* Integer, Fl oat, Character, Or String,

* an enumerated type whose cases are al anonymous classes, such as Bool ean,
e asubtype of Decl arati on inceyl on. | anguage. met a. decl ar at i on,

e anannotation type,

e {7} or[T*] whereT isalegal annotation parameter type, or

« any tuple type whose element types are legal annotation parameter types.
Aninitializer parameter of an annotation type may be variadic.

Aninitializer parameter of an annotation type may have a default argument, which must be alegal annotation argument.

7.2.3. Constrained annotation types

A constrained annotation type is an annotation type that is a subtype of Opti onal Annot ati on OF SequencedAnnot at i on
defined in the package ceyl on. | anguage.

e |If Aisasubtype of Opti onal Annot ati on, @ most one annotation of annotation type A may occur at a given program
element.

« |If Aisasubtype of SequencedAnnot at i on, multiple annotations of annotation type A may occur at a given program ele-
ment.

e |If Aisasubtype of Opti onal Annot at i on<A, P>, Of SequencedAnnot at i on<A, P> then an annotation of annotation type A
may not occur at a program element whose reference expression type, as defined in 86.11.3 Type of areference expres-
sion, isnot assignableto p.

shared final annotation class Scope(shared ScopeType scope)
sati sfies Optional Annot ati on<Scope, C assOr | nt erfaceDecl arati on> {
string => (scope==request then "request")
el se (scope==session then "session")
el se (scope==application then "application")
el se not hi ng;

shared final annotation class Todo(String text)
sati sfies SequencedAnnot ati on<Todo> {
string => text;

Note: it is perfectly acceptable for multiple annotation constructors to return the same annotation type.

7.3. Annotation values
An annotation value is the value returned when an annotation constructor is invoked. We may obtain the annotation values

of all annotations of a given annotation type that occur at a given program element by passing the annotation type and pro-
gram element metamodel reference to the method annot at i ons() defined in the package ceyl on. | anguage. nodel .

Scope scope = annotations( Scope’, "class Person’) else Scope(request);

Todo[] todos = annotations( Todo™, “function nethod);
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7.4. Language annotations

Certain important annotations are predefined in the module ceyl on. | anguage.

7.4.1. Declaration modifiers

The following annotations, called modifiers, are compiler instructions that affect the compilation process:

» shared specifies that adeclaration is visible outside of the package or body in which it occurs, or that a package isvis-
ible outside the module it belongs to.

e abstract specifiesthat aclass cannot beinstantiated.

e formal specifies that a member does not specify an implementation and must therefore be refined by every concrete
subclass.

» defaul t specifiesthat amethod, attribute, or member class may be refined by subtypes.

e actual indicates that a method, attribute, or member type refines a method, attribute, or member type defined by a su-
pertype.

e vari abl e specifiesthat avalue may be assigned multiple times.

« | ate disables definite initialization checking for areference, allowing the reference to be initialized after the initializer
of the class to which it belongs has already completed.

e native specifies that a program element is actually implemented in a different language, and that the program element
should be ignored by the Ceylon compiler backend.

* deprecated indicates that a value, function or type is deprecated. It accepts an optional String argument. The com-
piler produces a warning when compiling code that depends upon a deprecated program element.

* final specifiesthat aclass may not be extended.
e annotati on specifiesthat aclassis an annotation type, or that atoplevel function is an annotation constructor.

The following annotation is a hint to the compiler that lets the compiler optimize compiled bytecode for non-64 bit archi-
tectures:

« smal | specifiesthat avalue of typel nteger, | nt eger Or Fl oat contains 32-hit values.
By default, | nt eger and FI oat are assumed to represent 64-bit values, as specified in §8.5.2 Numeric operations.

Note that snal | isnot yet supported in Ceylon 1.0.

7.4.2. Documentation

The following annotations are instructions to the documentation compiler:

* doc specifies the description of a program element, in Markdown format text.

* by specifies the authors of a program element.

* 1icense specifiesthe URL of the license under which a module or package is distributed.
* see Specifies arelated member or type.

e throws specifiesathrown exception type.

* tagged specifies classifying named tags.

The st ri ng arguments to the depr ecat ed, doc, t hrows and by annotations are parsed by the documentation compiler as
Markdown-format content.
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These annotations are all defined in the package ceyl on. | anguage.

7.5. Serialization

TODO: Define how serialization works.

Project Ceylon: Final release draft (1.0) 111
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A Ceylon program executesin avirtual machine environment, either:

e aJavaVirtua Machine (JVvM), or
e aJavaScript virtual machine.
In future, other virtual machine architectures may be supported.

Despite the obvious differences between the respective languages that these virtual machines were designed for, they share
very much in common in terms of runtime semantics, including common notions such as object identity, primitive value
types, exceptions, garbage collection, dynamic dispatch, and pass by reference.

Ceylon abstracts away many of the differences between these platforms, and reuses what is common between them. Inevit-
ably there are some differences that can't reasonably be hidden from the Ceylon program, and the programmer must take
these differences into consideration.

In Ceylon, every value is a reference to an instance of a class, except within a dynani ¢ block, where a value with no type
may be areference to an object which is not an instance of aclass.

Note: the semantics of objects without classes is platform-dependent and outside the scope of this specification.

8.1. Object instances, identity, and reference passing

An object is a unique identifier, together with areference to a class, its type arguments, and a persistent value for each ref-
erence declared by the class (including inherited references). The object is said to be an instance of the class.

A value is a reference to an object (a copy of its unique identifier). At a particular point in the execution of the program,
every reference of every object that exists, and every initialized reference of every function, getter, setter, or initializer that
is currently executing has avalue. Furthermore, every time an expression is executed, it produces a value.

Two values are said to be identical if they are references to the same object—if they hold the same unique identifier. The
program may determine if two values of type | dent i fi abl e are identical using the === operator defined in §6.8.2 Operator
definition. It may not directly obtain the unique identifier (which is a purely abstract construct). The program has no way
of determining the identity of avalue which isnot of typel dentifiabl e.

Given a value, the program may determine if the referenced object is assignable to a certain type using the i s operator.
The object is assignable to the given type if the applied type formed by its class and type arguments is a subtype of the giv-
en type according to the type system defined in Chapter 3, Type system. (Therefore, the Ceylon runtime must be capable of
reasoning about subtyping.)

Invocation of a function or instantiation of a class results in execution of the function body or class initializer with para-
meter values that are copies of the value produced by executing the argument expressions of the invocation, and a refer-
ence to the receiving instance that is a copy of the value produced by executing the receiver expression. The value pro-
duced by the invocation expression is a copy of the value produced by execution of ther et ur n directive expression.

Person nysel f (Person nme) { return me; }
Person p = ...;
assert (nyself(p)===p); //assertion never fails

Semaphore s = Senmaphore();
t hi s. semaphore = s;
assert (semaphore===s); //assertion never fails

A new object is produced by execution of a class instantiation expression. The Ceylon compiler guarantees that if execu-
tion of aclassinitializer terminates with no uncaught exception, then every reference of the object has been initialized with
a well-defined persistent value. The value of areference is initialized for the first time by execution of a specifier or as-
signment expression. Every class instantiation expression results in an object with a new unique identifier shared by no
other existing object. The object exists from the point at which execution of itsinitializer terminates. Conceptually, the ob-
ject exists until execution of the program terminates.

In practice, the object exists at least until the point at which it is not reachable by recursively following references from
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any function, getter, setter, or initializer currently being executed, or from an expression in a statement currently being ex-
ecuted. At this point, its persistent values are no longer accessible to expressions which subsequently execute and the ob-
ject may be destroyed by the virtual machine. There is no way for the program to determine that an object has been des-
troyed by the virtual machine (Ceylon does not support finalizers).

8.1.1. Value type optimizations

As a specia exception to the rules defined above, the compiler is permitted to emit bytecode or compiled JavaScript that
produces a new instance of certain types in the module ceyl on. | anguage without execution of the initializer of the class,
whenever any expression is evaluated. These types are: | nt eger, Fl oat, Character, Range, Entry, String, Array, and
Tupl e. Furthermore, it is permitted to use such a newly-produced instance as the value of the expression, as long as the
newly-produced instance is equal to the value expected according to the rules above, as determined using the == operator.

Therefore, the types listed above directly extend ooj ect instead of Basi ¢, and are not | dent i fi abl e.

Note: this does no justice at all to our compiler. Actually the compiler infrastructure already supports value type optimiza-
tion for user-defined types, though we have not yet exposed this functionality as part of the language.

8.1.2. Type argument reification

Type arguments, as defined in §3.6 Generic type arguments, are reified in Ceylon. An instance of a generic type holds a
reference to each of its type arguments. Therefore, the following are possible in Ceylon:

testing the runtime value of a type argument of an instance, for example, obj ect Li st i s Li st<Person> Of case (is
Li st <Person>),

« filtering exceptions based on type arguments, for example, cat ch (Not FoundExcept i on<Per son> pnfe), and

testing the runtime value of an instance against a type parameter, for example x i s Key, or against a type with atype
parameter as an argument, for example, obj ect Li st is Li st <El enent >.

« obtaining a Type object representing a type with type arguments, for example, ° Li st <Per son>",

« obtaining a Type object representing the runtime value of atype parameter, for example, " El enent *, or of atype with a
type parameter as an argument, for example, * Li st <El enent >*, and

e obtaining a Type object representing the runtime value of a type argument of an instance using reflection, for example,
type(objectList).typeArgunments.first.

At runtime, all types are concrete types formed by:

« recursively replacing al type aliases, class aliases, and interface aliases with their definitions, which is always possible

according to §3.2.10 Type alias elimination, and
e recursively replacing al type parameters with their type arguments
in any type that appearsin an expression or condition.

Therefore, every type parameter refers, at runtime, to a concrete type that involves no type aliases or type parameters. In
particular, the type arguments held by an instance of a generic class are concrete types.

This program printsstring[] .

class Generic<out T>(T t) { string=>T .string; }
Generi c<{S*}> gen<S>(S* ss) => Generic(ss);
void run() {

print(gen("hello", "world"));

The runtime is generally permitted, as an optimization, to return a more precise type in place of aless precise type when a
type parameter is evaluated. This program may print St ri ng instead of avj ect, even though bj ect is the type argument
inferred at compile time.

class Generic<out T>(T t) { string=>T .string; }
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Generi c<(bj ect > gen(oj ect o) => Ceneric(0);
void run() {
print(gen("hello"));

8.2. Sequential execution and closure

Ceylon programs are organized into bodies, as defined in 85.1 Block structure and references, containing statements which
are executed sequentially and have access to declarations which occur in the surrounding lexical context and to persistent
values held by references, as defined in 84.8.1 References, declared in the surrounding lexical context.

Note: for the purposes of this section, an interface body is, strictly speaking, a trivial case of a body which contains no
statements or persistent values, but we're primarily concerned with blocks and class bodies.

The statements and non-lazy specifiers that directly occur in a body are executed sequentialy in the lexical order in which
they occcur. Execution of a body begins at the first statement or non-lazy specifier. Execution of a block terminates when
the last statement or non-lazy specifier of the body finishes executing, or when a control directive that terminates the block
is executed, or when an exception is thrown by an evaluation, assignment, invocation, or instantiation.

8.2.1. Frames

When execution of abody begins, aframeis created. For each reference whose declaration directly occursin the body, the
frame has a value, which may or may not be initialized. The value may be initialized or assigned during execution of the

body.

While a body is executing, all values held in the frame are considered accessible. An evaluation, assignment, invocation,
or instantiation may result in a pause in execution of the body while the called getter, setter, function, or class is executed
or instantiated. However, the frame associated with the calling body is retained and values held in the frame are still con-
sidered accessible. When execution of the body resumes, the frame is restored.

When execution of a body terminates, the frame may or may not become inaccessible. In the case of a class body, if the
initializer terminates with no thrown exception, the frame and its values become a new instance of the class, are associated
with the newly created unique identifier, and remain accessible while this object is itself accessible. In the case of any oth-
er kind of body, or in the case that an initializer throws an exception, the frame and its values may remain accessible if:

» areferenceto afunction or class declared within the body is accessible,
e aninstance of aclass declared within the body is accessible, or

« aninstance of a comprehension declared within the body is accessible.
Otherwise, the frame becomes inaccessible and may be destroyed.

The principle of closure states that a nested body always has access to a frame for every containing body. The set of cur-
rent instances of containing classes and current frames of containing blocks forms the closure of a nested declaration.

8.2.2. Current instances and current frames

A frame may be the current frame for a body. When the body is executing, the created frame is the current frame. When
execution of the body terminates, the created frame is no longer the current frame. Invocation or evaluation of a member of
a class or interface, invocation of a callable reference or anonymous function, or evaluation of the values produced by a
comprehension may result in the frame being restored as the current frame.

A class instance, callable reference, anonymous function reference, or comprehension instance packages a reference to a
frame for each body containing the program element, as specified below. When a member of the class instance is invoked
or evaluated, when the callable reference or anonymous function is invoked, or when the comprehension instance produces
avalue, these frames are restored as the current frames of the associated bodies. When the invocation or evaluation termin-
ates, or when the comprehension val ue has been produced, these frames are no longer current frames.

The value associated with a value reference in the current frame of the body to which the value reference belongs is called
the current value of the value reference.
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If aframeisthe current frame for a class or interface body, we call it the current instance of the class or interface.

TODO: in the following two sections, account for callable references, anonymous function references, and comprehension
instances.

8.2.3. Current instance of a class or interface

If astatement is occurs directly or indirectly inside a class or interface body, then there is always a current instance of the
class or interface when the statement is executed. The current instance is determined as follows:

» For astatement that occurs sequentialy, as defined by §5.1 Block structure and references, in the body of the class, the
current instance is the new instance being initialized.

< For astatement that occurs sequentially in the body of a member of the class or interface, the current instance is the re-
ceiving instance of the base or member expression that resulted in areference to the member.

« For a statement that occurs sequentially in the body of a nested class or interface that occurs in the body of the class or
interface, the current instance is the same object that was the current instance when the initializer of the current in-
stance of the nested class or interface was executed.

« Otherwise, for any other statement that occurs sequentially in the body of a declaration that occurs in the body of the
class or interface, the current instance is the same object that was the current instance when the base member expres-
sion that resulted in areference to the declaration was executed.

Here, i nner oj ect isthe current instance of | nner when nenber () isexecuted, and out er Obj ect isthe current instance of
CQuter:

Quter outerObject = Quter();
I nner innerCbject = outerObject.Inner();
i nner Obj ect . nenber () ;

8.2.4. Current frame of a block

If a statement occurs directly or indirectly inside a block, then there is always a current frame of the block when the state-
ment is executed. The current frame is determined as follows:

» If the statement occurs sequentially, as defined by 85.1 Block structure and references, in the block, the current frame
is the frame associated with the current execution of the block.

« For a statement that occurs sequentially in the body of a nested class or interface that occurs in the block, the current
frame is the same frame that was the current frame when the initializer of the current instance of the nested class or in-
terface was executed.

e Otherwise, for any other statement that occurs sequentially inside the body of a declaration that occurs in the block,
and the current frame is the frame that was the current frame when the base member expression that resulted in a refer-
ence to the declaration was executed.

In each of the following code fragments, resul t refersto thevalue " hel I o":

String()() outerMethod(String s) {
String() mddl eMethod() {
String innerMethod() => s;
return innerMet hod;

}
return m ddl eMet hod,;
}

String m ddl eMet hod() () => outerMethod("hello");
String innerMethod() => m ddl eMet hod();
String result = innerMethod();

bj ect outerMethod(String s) {
obj ect m ddl eObj ect {
shared actual String string => s;
}

return m ddl eObj ect ;

Project Ceylon: Final release draft (1.0) 115



Execution

}
bj ect m ddl eQoj ect = outer Met hod("hell0");

String result = mddl eObject.string;

8.2.5. Initialization

When an instance is instantiated, its initializer is executed, and the initializer for every class it inherits is executed. For a
classc:

e Firg, theinitializer of j ect defined in ceyl on. | anguage is executed. (Thisinitializer is empty and does no work.)

« For each superclass x of c, there is exactly one other superclass Y of c that directly extends x. When execution of the
initializer of X terminates without a thrown exception, execution of the initializer of v begins.

< Finaly, when execution of the initializer of ¢ terminates without a thrown exception, the new instance of c is fully-
initialized and made accessible to the calling code.

If any initializer in the class heirarchy terminates with a thrown exception, initialization terminates and the incompletely-ini-
tialized instance never becomes accessible.

Each initializer produces a frame containing values for each reference declared be the corresponding class. These frames
are aggregated together to form the new instance of the class C.

Note: sinceinterfaces don't have initializers, the issue of "linearization" of supertypes simply never arisesin Ceylon. There
isa natural, well-defined initialization ordering.

8.2.6. Class instance optimization

As an exception to the above, the compiler is permitted to destroy a persistent value associated with a class instance when
the class initializer terminates, potentially rendering inaccessible the instance identified by the value, if it can determine
that the persistent value will never be subsequently accessed by the program.

This optimization is the only source of a distinction between a "field" of a class and a "local variable" of its initializer.
Thereisno way for a program to observe this distinction.

8.2.7. Execution of expression and specification statements

When an expression statement is executed, the expression is evaluated.

When a non-lazy specification statement is executed, the specified expression is evaluated, and the resulting value as-
signed to the specified reference within the current frame or current instance associated with the body to which the spe-
cified reference belongs.

When a lazy specification statement is executed, the specified expression is associated with the specified reference within
the current frame or current instance associated with the body to which the specified reference belongs. Subsequent evalu-
ation or invocation of the reference for this current frame or current instance may result in evaluation of the specified ex-
pression, in which case the expression is evaluated within this current frame or current instance.

8.2.8. Execution of control directives

Execution of a control directive, as specified in 85.2.2 Control directives, terminates execution of the body in which it oc-
curs, and possibly of other containing bodies.

e Areturn directive that occurs sequentialy in the body of a function, getter, setter, or classinitializer terminates execu-
tion of the body of the function, getter, setter, or classinitializer and of all intervening bodies. Optionaly, it determines
the return value of the function or getter.

* A break directive terminates execution of the body of the most nested containing loop in which it occurs sequentially,
and of al intervening bodies. Additionally, it terminates execution of the loop.

* A continue directive terminates execution of the body of the most nested containing loop in which it occurs sequen-
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tially, and of all intervening bodies. It does not terminate execution of the loop.

e A throwdirective that occurs sequentialy in the body of afunction, getter, setter, or classinitializer terminates execu-
tion of the body of the function, getter, setter, or classinitializer and of all intervening bodies, and, furthermore, the ex-
ception propagates to the caller, as defined below, unless there is an intervening t ry with acat ch clause matching the
thrown exception, in which case it terminates execution of the body of the try statement and all intervening bodies,
and execution continues from the body of the cat ch clause.

8.2.9. Exception propagation

If execution of an evaluation, assignment, invocation, or instantiation terminates with an exception thrown, the exception
propagates to the calling code, and terminates execution of the body of the function, getter, setter, or class initializer in
which the expression involving the evaluation, assignment, invocation, or instantiation sequentially occurs, and of al inter-
vening bodies, and, furthermore, the exception propagates to the caller unless there is an intervening try with a cat ch
clause matching the thrown exception, in which case it terminates execution of the body of thetry statement and all inter-
vening bodies, and execution continues from the body of the cat ch clause.

8.2.10. Initialization of toplevel references

A toplevel reference has no associated frame. Instead, the lifecycle of its persistent value is associated with the loading and
unloading of a module by the module runtime. The first time a toplevel reference is accessed following the loading of its
containing module, its initializer expression is evaluated, and the resulting value is associated with the reference. This as-
sociation survives until the toplevel referenceis reassigned, or until the module is unloaded by the module runtime.

Initialization of atoplevel reference may result in recursive initialization of other toplevel references. Therefore, it is pos-
sible that a cycle could occur where evaluation of a toplevel reference occurs while evaluating its initializer expression.
When thisoccurs, ani niti al i zati onExcept i on iSthrown.

8.3. Execution of control structures and assertions
Control structures, as specified in 85.3 Control structures and assertions, are used to organize conditional and repetitive

code within abody. Assertions are essentially a sophisticated sort of control directive, but for convenience are categorized
together with control structures.

8.3.1. Evaluation of condition lists

Execution of ani f, whi | e, Or assert requires evaluation of a condition list, as defined in §5.3.3 Control structure condi-
tions.

To determine if a condition list is satisfied, its constituent conditions are evaluated in the lexical order in which they occur
in the condition list. If any condition is not satisfied, none of the subsequent conditionsin the list are evaluated.

« A boolean condition is satisfied if its expression evaluatesto t r ue when the condition is evaluated.

For any other kind of condition, the condition is satisfied if its value reference or expression evaluates to an instance of the
required type when the condition is eval uated:

« for an assignability condition, the condition is satisfied if the expression evaluates to an instance of the specified type
when the control structure is executed,

« for an existence condition, the condition is satisfied unless the expression evaluates to nul I when the control structure
is executed, or

« for a nonemptiness expression, the condition is satisfied unless the expression evaluates to an instance of []] Nul |
when the control structure is executed.

A condition list is satisfied if and only if all of its constituent conditions are satisfied.

8.3.2. Validation of assertions
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When an assertion, as specified in 85.3.11 Assertions, is executed, its condition list is evaluated. If the condition list is not
satisfied, an exception of type Asser ti onFai | ure inceyl on. | anguage isthrown.

Theinformation carried by the Assert i onFai | ur e includes:

e thetext of the Ceylon code of the condition that failed,

» the message specified by the doc annotation of the assertion, if any.

8.3.3. Execution of conditionals
Theif/el se and swi t ch/ case/ el se constructs control conditional execution.

When thei f/ el se construct, specified in §85.3.6 if/else, is executed, its condition list is evaluated. If the condition list is
satisfied, thei f block is executed. Otherwise, the el se block, if any, is executed, or, if the construct has an el se i f, the
childi f construct is executed.

When aswi t ch/ case/ el se construct, specified in §5.3.7 switch/caselelse, is executed, its swi t ch expression is evaluated
to produce avalue. The value is guaranteed to match at most one case of the swi t ch. If it matches a certain case, then that
case block is executed. Otherwise, swi t ch is guaranteed to have an el se, and so the el se block is executed.

The value produced by the swi t ch expression matches acase if either:

+ thecaseisalist of literal values and value references the value is identical to one of the value referencesin the list or
equal to one of the literal valuesin thelist, or if

» thecaseisan assignability condition of formcase (is V) andthevalueisan instance of v.

8.3.4. Execution of loops

Thefor/ el se and whi | e loops control repeated execution.

When awhi | e construct, specified in §5.3.9 while, is executed, the loop condition list is evaluated repeatedly until the first
time the condition list is not satisfied, or until a break, return, or t hr ow directive that terminates the loop is executed.
Each time the condition is satisfied, the whi | e block is executed.

When af or/ el se construct, specified in §5.3.8 for/else, is executed:

» theiterated expression is evaluated to produce an an instance of It er abl e,
e aniterator isobtained by callingiterator() ontheiterable object, and then

« thefor block is executed once for each value of produced by repeatedly invoking the next () method of the iterator,
until the iterator produces the value f i ni shed, or until a break, return, or t hr ow directive that terminates the loop is
executed.

Note that:

« if the iterated expression is also of type X[ ], the compiler is permitted to optimize away the use of It erat or, instead
using indexed element access.

« if theiterated expression is a range constructor expression, the compiler is permitted to optimize away creation of the
Range, and generate the indices using the successor operation.

We say that the loop exits early if it ends via execution of abr eak, return, or t hr ow directive. Otherwise, we say that the
loop completes normally.

If the loop completes normally, the el se block is executed. Otherwise, if the loop exists early, the el se block is not ex-
ecuted.

8.3.5. Exception handling
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When atry/ catch/ final 'y construct, specified in §5.3.10 try/catch/finally, is executed:

e theresource expressions, if any, are evaluated in the order they occur, and then open() is called on each resulting re-
source instance, in the same order, then

« thetry block is executed, then

* close() iscalled onthe resource instances, if any, in the reverse order that the resource expressions occur, with the ex-
ception that propagated out of thet ry block, if any, then

< if an exception did propagate out of the try block, the first cat ch block with a variable to which the exception is as-
signable, if any, is executed, and then

e thefinally block, if any, isexecuted, even in the case where an exception propagates out of the whole construct.

TODO: Specify what happensif cl ose() throws an exception? Same semantics as Java with "suppressed” exceptions.

8.3.6. Dynamic type checking

Inside a dynani ¢ block, a situation might occur that requires dynamic type checking, as specified in §5.3.12 Dynamic
blocks. It is possible that:

< thevaueto which an expression with no type evaluates at execution time might not be an instance of the type required
where the expression occurs,

e inparticular, the value to which aswi t ch expression with no type evaluates at execution time might be an instance of a
type not covered by the cases of aswi t ch with no el se, or

e aqualified or unqualified reference which does not refer to a statically typed declaration might not resolve to any de-
claration at all.

Whenever such a condition is encountered at runtime, an Asser t i onExcept i on isimmediately thrown.

Note: in Ceylon 1.0, dynamic type checking is only supported on JavaScript virtual machines.

8.4. Evaluation, invocation, and assignment

Evaluation of an expression may result in:

< invocation of afunction or instantiation of aclass,
e evauation of avalue,
e instantiation of an instance of cal | abl e that packages a callable reference, or

e assignment to avariable value.

8.4.1. Dynamic dispatch

Dynamic dispatch is the process of determing at runtime a member declaration based upon the runtime type of an object,
which, as aresult of subtype polymorphism, may be different to its static type known at compile time.

Any concrete class is guaranteed to have exactly one declaration of a member, either declared or inherited by the class,
which refines al other declarations of the member declared or inherited by the class. At runtime, this member is selected.

There is one exception to this rule: member expressions where the receiver expression is of form super or (super of
Type) , as defined in §86.3.3 super, are dispatched based on the static type of the receiver expression:

« Any invocation of amember of super is processed by the member defined or inherited by the supertype, bypassing any
member declaration that refines this member declaration.

Project Ceylon: Final release draft (1.0) 119



Execution

« Any invocation of amember of an expression of form (super of Type) is processed by the member defined or inher-
ited by Type, bypassing any member declaration that refines this member declaration.

8.4.2. Evaluation

Evaluation of a value reference, as defined in 86.5.3 Value references, produces its current value. Evaluation of a callable
reference, as defined in §6.5.4 Callable references, that does not occur as the primary of a direct invocation results in a
new instance of cal | abl e that packages the callable reference.

person. name
'/'.equal s
When avalue reference expression is executed:

« firgt, the receiver expression, if any, is evaluated to obtain areceiving instance for the evaluation, then

« theactua declaration to be invoked is determined by considering the runtime type of the receiving instance, if any, and
then

« if thedeclaration isareference, its persistent value is retrieved from the receiving instance, or

« otherwise, execution of the calling body pauses while the body of its getter is executed by the receiving instance, then,
« finally, when execution of the getter ends, execution of the calling body resumes.

Theresulting value is the persistent value retrieved, or the return value of the getter, as specified by ther et ur n directive.

When a callable reference expression that does not occur as the primary of a direct invocation expression is executed:

« first, the receiver expression, if any, is evaluated to obtain areceiving instance for the evaluation, then

» the receiving instance, a reference to the declaration to be invoked, or a reference to the current frame or instance of
every body that contains the referenced declaration are packaged together into an instance of cal | abl e.

The resulting value is the instance of cal | abl e. The concrete class of thisinstance is not specified here.

8.4.3. Assignment

Given a value reference, as defined in §6.5.3 Value references, to a variable, the assignment operator = assigns it a new
value.

person. nane = "Gvin"
When an assignment expression is executed:

» firgt, the receiver expression of the value reference expression is executed to obtain the receiving instance, then
« theactua declaration to be assigned is determined by considering the runtime type of the receiving instance, and then
< if themember is areference, its persistent value is updated in the receiving instance, or

« otherwise, execution of the calling body pauses while the body of its setter is executed by the receiving instance with
the assigned value, then,

« finally, when execution of the setter ends, execution of the calling body resumes.

8.4.4. Invocation

Evaluation of an invocation expression, as defined in §6.6 Invocation expressions, results in invocation of a function, or
instantiation of a class. Every invocation has a callable expression:
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« inadirect invocation, the callable expression is a callable reference, and

e inanindirect invocation, the callable expression is an instance of cal | abl e that packages an underlying callable refer-
ence.

In either case, the callable expression determines the instance and member to be invoked.
print("Hello world!")
Ent ry( person. nane, person)

When an invocation expression is executed:

« first, the callable expression is evaluated to obtain the receiving instance, then
e each listed argument or spread argument is evaluated in turn in the calling body, and

» if the argument list has a comprehension, a comprehension instance, as defined in §8.6 Evaluation of comprehensions,
is obtained, and then

» theactua declaration to be invoked is determined by considering the runtime type of the receiving instance, if any, and
then

< execution of the calling body pauses while the body of the function or initializer is executed by the receiving instance
with the argument values, then

« finally, when execution of the function or initializer ends, execution of the calling body resumes.

A function invocation evaluates to the return value of the function, as specified by ther et ur n directive. The argument val-
ues are passed to the parameters of the method, and the body of the method is executed.

A class instantiation evaluates to a new instance of the class. The argument values are passed to the initializer parameters
of the class, and the initializer is executed.

8.4.5. Evaluation of anonymous functions

When an anonymous function expression, as defined in 6.4 Anonymous functions, is evaluated, a reference to the func-
tion and a reference to the current frame or instance of every containing body are packaged into an instance of cal | abl e.
The instance of cal | abl e isthe resulting value of the expression. The concrete class of thisinstance is not specified here.

8.4.6. Evaluation of enumerations

Evaluation of an enumeration expression, as defined in §6.6.12 Iterable and tuple enumeration, resultsin creation of an it-
erable abject or tuple.

{ "hello", "world" }
[ new, *elenents ]
When an enumeration expression is executed:

« first, each listed argument or spread argument is evaluated in turn in the calling body, and

« if the argument list has a comprehension, a comprehension instance, as defined in §8.6 Evaluation of comprehensions,
is obtained, and then

e theresulting argument values are packaged into an instance of It erabl e or Sequence, and this object is the resulting
value of the enumeration expression, unless

« there are no arguments, and no comprehension, in which case the resulting value of the enumeration expression is the
object enpt y.
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In the case of an iterable enumeration, the concrete class of the resulting value is not specified here. In the case of atuple
enumeration it is always Tupl e, Enpt y, OF Sequence.

8.4.7. Evaluation of spread arguments and comprehensions

A spread argument, as defined in §6.6.5 Spread arguments, produces multiple values by iterating the iterable object to
which the spread operator is applied.

When a spread argument expression type is a subtype of Sequenti al , the behavior does not depend upon where the spread
argument occurs:

« |f it occurs as an argument, the sequence produced by evaluating the expression is passed directly to the parameter.

< If it occursin an enumeration expression, the sequence produced by evaluating the expression is appended directly to
the resulting iterable object or tuple.

On the other hand, when a spread argument expression type is not a subtype of Sequenti al , the behavior depends upon
where the spread argument occurs:

e |f it occurs as an argument to a variadic parameter in a positional argument list, the values produced by a spread argu-
ment are evaluated immediately and packaged into an instance of Sequence and passed to the variadic parameter, un-
less there are no values, in which case the object enpt y is passed to the variadic parameter.

e |f it occurs as an argument to a parameter of type t er abl e at the end of a named argument list, the iterable object pro-
duced by evaluating the expression is passed directly to the parameter.

e If it occursin atuple enumeration, the values produced by a spread argument are evaluated immediately and packaged
into an instance of sequence and appended to the resulting tuple.

e |If it occursin an iterable enumeration, the iterable object produced by evaluating the expression is chained directly to
the resulting iterable object.

Likewise, a comprehension, as defined in §6.6.6 Comprehensions, produces multiple values, as specified by §8.6 Evalu-
ation of comprehensions. The behavior depends upon where the comprehension occurs:

e If it occurs as an argument to a variadic parameter in a positional argument list, the values produced by the comprehen-
sion instance are evaluated immediately, packaged into an instance of Sequence, and passed to the variadic parameter,
unless there are no values, in which case the object enpt y is passed to the variadic parameter.

e |f it occurs as an argument to a parameter of type | t er abl e at the end of a named argument list, the comprehension in-
stance is packaged into an iterable object that produces the values of the comprehension on demand, and this iterable
object is passed directly to the parameter. The concrete class of this object is not specified here.

< |If it occurs in a tuple enumeration, the values produced by the comprehension instance are evaluated immediately,
packaged into an instance of Sequence, and appended to the resulting tuple.

e If it occursin an iterable enumeration, the comprehension instance is packaged into an iterable object that produces the
values of the comprehension on demand, and this iterable object is chained directly to the resulting iterable object. The
concrete class of this object is not specified here.

8.5. Operator expressions

Most operator expression are defined in terms of function invocation, value evaluation, or a combination of invocations
and evaluations, as specified in §6.8 Operators. The semantics of evaluation of an operator expression therefore follows
from the above definitions of evaluation and invocation and from its definition in terms of evaluation and invocation.

However, this specification alows the compiler to take advantage of the optimized support for primitive value types
provided by the virtual machine environment.

8.5.1. Operator expression optimization
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Asaspecia exception to the rules, the compiler is permitted to optimize certain operations upon certain types in the mod-
uleceyl on. | anguage. Thesetypes are: | nt eger , Fl oat , Char act er, Range, Entry, String, Array, and Tupl e.

Thus, the tables in the previous chapter define semantics only. The compiler may emit bytecode or compiled JavaScript
that produces the same value at runtime as the pseudo-code that defines the operator, without actually executing any invoc-
ation, for the following operators:

o dl arithmetic operators,

* the comparison and equality operators ==, ! =, <=>, <, >, <=, >= when the argument expression types are built-in numeric
types, and

e theRange and Ent ry construction operators.. and - >.

In all operator expressions, the arguments of the operator must be evaluated from left to right when the expression is ex-
ecuted. In certain cases, depending upon the definition of the operator, evaluation of the leftmost argument expression res-
ultsin avalue that causes the final value of the operator expression to be produced immediately without evaluation of the
remaining argument expressions. Optimizations performed by the Ceylon compiler must not alter these behaviours.

Note: this restriction exists to ensure that any effects are not changed by the optimizations.

8.5.2. Numeric operations

The arithmetic operations defined in §6.8.10 Arithmetic operators for values of type I nteger and Fl oat are defined in
terms of methods of the interface Nuneri c. However, these methods themselves make use of the native operations of the
underlying virtual machine. Likewise, values of type | nt eger and Fl oat are actually represented in terms of a format nat-
ive to the virtual machine.

It follows that the precise behavior of numeric operations depends upon the virtual machine upon which the program ex-
ecutes. However, certain behaviours are common to supported virtual machines:

e Values of type Fl oat are represented according to the IEEE 754 specification, IEEE Standard for Binary Floating-
Point Arithmetic, and floating point numeric operations conform to this specification. Where possible, a double-pre-
cision 64-bit representation is used. Note that even though Fi oat has a 64-bit representation on both Java and JavaS-
cript virtual machines, the actual range of representable values differs.

*  Where possible, values of type | nt eger are represented in two's complement form using a fixed bit length. Where pos-
sible, a 64-hit representation is used. Overflow and underflow wrap silently. This is the case for the Java Virtual Ma
chine.

e Otherwise, values of type I nt eger are represented according to the |IEEE 754 specification. Thisis the case for JavaS-
cript virtual machines.

Platform-dependent behavior of numeric operations is defined in the Java Language Specification, and the ECMA Script
Language Specification.

It might be argued that having platform-dependent behavior for numeric operations opens up the same portability con-
cerns that affected languages like C in the past. However, the cross-platform virtual machines supported by Ceylon
already provide a layer of indirection that substantially eases portability concerns. Of course, numeric code is not guaran-
teed to be completely portable between the Java and JavaScript virtual machines, but it's difficult to imagine how such a
level of portability could reasonably be achieved.

8.6. Evaluation of comprehensions

When a comprehension, as specified in §6.6.6 Comprehensions, is evaluated, a reference to the comprehension, together
with areference to the current frame or instance of every containing body, are packaged together into a comprehension in-
stance. A comprehension instance is not considered a value in the sense of §8.1 Object instances, identity, and reference
passing. Instead, it is a stream of values, each produced by evaluating the expression clause of the comprehension.

A comprehension consists of a series of clauses. Each clause of a comprehension, except for the expression clause that ter-
minates the list of clauses, produces a stream of frames. A frame is a set of values for iteration variables and condition
variables declared by the clause and its parent clauses.
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Note: each child clause can be viewed as a body nested inside the parent clause. The lifecycle of comprehension frames
reflects this model.

Evaluation of an expression occurring in a comprehension clause occurs in the context of the packaged frames associated
with the comprehension instance together with a comprehension frame associated with the clause.

8.6.1. for clause

The expression which produces the source stream for a child f or clause may refer to an iteration variable of a parent f or
clause. In this case the child clause is considered correlated. Otherwise it is considered uncorrelated.

In either case, the child clause produces a stream of frames. For each frame produced by the parent clause, and for each
value produced by the source stream of the child clause, the child clause produces a frame consisting of the parent clause
frame extended by the iteration variable value defined by the child clause.

This comprehension has a correlated f or clause. For each character ¢ in each string w in wor ds, the child f or clause pro-
ducestheframe{ String word=w;, Character char=c; }.

for (word in words) for (char in word) char

This comprehension has an uncorrelated f or clause. For each string n in nouns, and each string a in adj ect i ves, the child
for clause producestheframe{ String noun=n; String adj=a; }.

for (noun in nouns) for (adj in adjectives) adj + " " + noun

8.6.2.if clause

A childif clausefiltersits parent clause frames. For every frame produced by the parent clause which satisfies the condi-
tion list of the child clause, the child clause produces that frame, extended by any condition variable defined by the child
clause.

This comprehension hasanii f clause. For each object o in obj ect s that is anonempty Stri ng, thei f clause produces the
frame{ Object obj=o0; String str=o; }.

for (obj in objects) if (is String str=obj, !str.enpty) str

8.6.3. Expression clause

As specified in §6.6.6 Comprehensions, every comprehension ends in an expression clause. An expression clause produces
asingle value for each frame produced by its parent clause, by evaluating the expression in the frame. These resulting val-
ues are the values returned by the whole comprehension.

8.7. Concurrency

Neither this specification nor the module cey! on. | anguage provide any facility to initiate or control concurrent execution
of aprogram written in Ceylon. However, a Ceylon program executing on the Java Virtual Machine may interact with Java
libraries (and other Ceyon modules) that make use of concurrency.

In this scenario, the execution of a Ceylon program is governed by the rules laid out by the Java programming language's
execution model (Chapter 17 of the Java Language Specification). Ceylon references belonging to a class or interface are
considered fields in the sense of the JLS. Any such refence not explicitly declared vari abl e is considered a final field.
Evaluation of a reference is considered a use operation, and assignment to or specification of a variable reference is con-
sidered an assign operation, again in terms of the JLS.
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Chapter 9. Module system

The Ceylon module architecture enables a toolset which relieves developers of many mundane tasks. The module system
specifies:

« the format of packaged deployable module archives (for the Java platform), module scripts (for the JavaScript plat-
form), and source archives,

e thelayout of amodule repository

» theformat of the package descriptor files which contain information about the packages contained in a module, includ-
ing whether a package is visible to other modules, and

« theformat of the module descriptor file which contains information about a module, along with alist of its versioned
dependencies.

Thus, developers are never exposed to individual . cl ass files, and are not required to manually manage module archives
using the operating system file manager. Instead, the toolset hel ps automate the management of modules within module re-
positories.

Circular dependencies between modules are not supported. The Ceylon compiler detects such dependencies and produces
an error.

9.1. The module runtime and module isolation

At any time, there may be multiple versions of a certain module available in the virtual machine. Modules execute under
the control of the module runtime. The module runtime:

« obtains modules from module repositories,
< reads module metadata and recursively loads dependencies, and
» isolates modules that belong to different assemblies.

Execution of a module begins with a specified toplevel method or class, or with an entry point specified in the module
descriptor, and imported modules are loaded lazily as classes they contain are needed. The name and version id of the im-
ported module containing the needed class are determined from the imported package name specified by the compilation
unit and the imported module version specified by the module descriptor.

The mechanism behind thisis platform-dependent.

9.1.1. Module isolation for the Java platform

In the VM environment, Each version of each module is loaded using a different class loader. Classes inside a module
have access to other classes in the same module and to classes belonging to modules that are explicitly imported in the
module descriptor. Classes in other modules are not accessible.

Ceylon supports asimplified class loader architecture:

e The bootstrap class loader owns classes required to bootstrap the module runtime. It is the direct parent of all module
classloaders, and its classes are visible to all module class loaders.

* A module class loader owns classes belonging to a given version of a certain module. Its classes are visible only to
classes belonging to the module class loader of a module which declares an explicit dependency on the given version
of the first module.

The Ceylon module runtime for the JVM isimplemented using JBoss Modules. It isincluded in the Ceylon SDK.

9.1.2. Module isolation for the JavaScript platform

In the JavaScript environment, modules are loaded using the r equi re() function defined by CommonJS Modules.
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There are various implementations of the CommonJS-style requi re() function, and Ceylon module scripts should work
with any of them.

9.1.3. Assemblies

A future release of the language will add support for assemblies, that is, the ability to:

e package together several interdependent versioned modules into a single archive for deployment as a single well-
defined application or service,

« gpecify the name and version of the application or service, and

e override the versions of imported modules declared in nodul es. ceyl on, asdefined in §9.3.12 Module descriptors, with
assembly-specific module versions.

An assembly archive will probably just be an archived module repository with an assembly descriptor.

9.2. Source layout

A source directory contains Ceylon source code in files with the extension . ceyl on and Java source code in files with the
extension . j ava. The module and package to which a compilation unit belongs is determined by the subdirectory in which
the sourcefileis found.

The name of the package to which a compilation unit belongs is formed by replacing every path directory separator char-
acter with a period in the relative path from the root source directory to the subdirectory containing the source file. In the
case of aJava source file, the subdirectory must agree with the package specified by the Java package declaration.

The name of the module to which a compilation unit belongs is determined by searching all containing directories for a
module descriptor. The name of the module is formed by replacing every path directory separator character with a period
in the relative path from the source directory to the subdirectory containing the module descriptor. If no module descriptor
is found, the code belongs to the default module.

Note: the default module isintended only as a convenience for experimental code.

A package or compilation unit may belong to only one module. No more than one module descriptor may occur in the con-
taining directories of a compilation unit.

Thus, the structure of the source directory containing the module or g. hel | o might be the following:

sour ce/
org/
hel | o/
nodul e. ceyl on //the nodul e descri ptor
mai n/
hel | 0. ceyl on
defaul t/

Def aul t Hel | 0. ceyl on
personal i zed/
Per sonal i zedHel | 0. ceyl on

The source code for multiple modules may be contained in a single source directory.

9.3. Module architecture

Compiled code is automatically packaged into module archives and module scripts by the Ceylon compiler. A module re-
pository is arepository containing module archives, module scripts, and other miscellaneous artifacts. A module archive or
module script is automatically obtained from a module repository when code belonging to the module is needed by the
compiler or module runtime.

Modules that form part of the Ceylon SDK are found in the module repository in the modul es directory of the Ceylon dis-
tribution.

Red Hat maintains a central module repository at ht t p: / / nodul es. ceyl on-1 ang. or g. Read access to this siteis free of re-
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gistration and free of charge. Ceylon projects may apply for a user account which provides write access to the central mod-
ule repository.

A module belonging to the central modul e repository must satisfy the following regulations:

e thefirst element of the module name must be a top-level internet domain name, and the second element of the module
name must be a second-level domain of the given top-level domain owned by the organization distributing the module,
and.

» the module must be made available under aroyalty-free license.
For example, a module developed by Red Hat might be named or g. j boss. server .

TODO: should we require that module archives be signed using the Javaj ar si gner tool?

9.3.1. Module names and version identifiers

A module name is a period-separated list of lowercase identifiers, for example:

ceyl on. | anguage
org. hi bernate

It is recommended that module names follow the Java package naming convention embedding the organization's domain
name (in this case, hi ber nat e. or g). The namespace cey! on is reserved for Ceylon SDK modules. The namespace j ava is
reserved for modules bel onging to the Java SDK. The namespace def aul t is reserved for the default module.

It is highly recommended, but not required, that every user-written module have at least three identifiers in its name.
Therefore, or g. hi ber nat e. or mis strongly preferred to or g. hi ber nat e.

Modules may not be "nested”. That is, the list of identifiers forming the name of a module may not be a prefix of thelist of
identifiers forming the name of another module.

A package belongs to a module if the list of identifiers forming the name of the module is a prefix of the list of identifiers
forming the name of the package. For example, the packages:

ceyl on. | anguage

ceyl on. | anguage. assertion

ceyl on. | anguage. net a

ceyl on. | anguage. net a. decl arati on

belong to the module cey! on. | anguage. The packages:

org. hi bernate
org. hi bernate.inp
or g. hi bernat e. cache

belong to the module or g. hi ber nat e.

TODO: This might not work out all that well in practice, unless we introduce some additional convention for "extras"
modules, for example, modules containing examples. It could be org. hi bernate VS org. hi bernate_exanpl e Or
org. hi bernate. core VSorg. hi ber nat e. exanpl e.

The name of the default module is def aul t . The default module has no version and cannot be published to a remote repos-
itory nor to the local repository cache under ~/ . ceyl on/ r epo.

A module version identifier is acharacter string containing digits, periods, and lowercase letters, for example:
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1.0.1
3.0.0. beta

TODO: at some stage we will probably need to add a format for specifying version ranges.

9.3.2. Module archive names for the Java platform

A module archive name is constructed from the module name and version identifier. A module archive name is of the fol-
lowing standard form:

<nodul e>- <ver si on>. car

where <modul e> isthe full name of the module, and <ver si on> isthe module version identifier. For example:

ceyl on. | anguage- 1. 0. 1. car
org. hi bernate-3. 0. 0. beta. car

The default module has no version, its module archive name isdef aul t . car

9.3.3. Module script names for the JavaScript platform

A module script name is likewise constructed from the module name and version identifier. A module script nameis of the
following standard form:

<nmodul e>-<version>.js

where <modul e> isthe full name of the module, and <ver si on> isthe module version identifier. For example:
ceylon.language-1.0.1.js
org. hibernate-3.0.0.beta.js

The default module has no version, its module archive nameisdefaul t.js

9.3.4. Source archive names

A source archive nameis of the following standard form:
<nmodul e>- <ver si on>. src

For example:
ceyl on. |l anguage-1.0.1.src

org. hi bernate-3.0.0. beta.src

The default module has no version, its source archive nameisdef aul t . src

9.3.5. Documentation archive names
A documentation archive name is of the following standard form:

<nmodul e>- <ver si on>. doc. zi p

For example:

ceyl on. | anguage- 1. 0. 1. doc. zi p

Project Ceylon: Final release draft (1.0) 128



Module system

or g. hi bernat e- 3. 0. 0. bet a. doc. zi p

The default module has no version, its documentation archive nameisdef aul t . doc. zi p

9.3.6. Module archives

A Ceylon module archiveisaJavaj ar archive which;

« contains a Ceylon module descriptor in the module directory,
e containsthe compiled . ¢l ass filesfor al compilation units belonging to the module, and
< hasafilename which adheres to the standard for module archive names.

The module directory of the module archive is formed by replacing each period in the fully qualified package name with
the directory separator character. For example, the module directory for the module ceyl on. | anguage is:

/ ceyl on/ | anguage

The module directory for the module or g. hi ber nat e is:

/ or g/ hi bernat e

The package directory for a package belonging to the module archive is formed by replacing each period in the fully quali-
fied package name with the directory separator character. For example, the package directory for the package
org. hi bernate.inpl is

/ or g/ hi bernat e/ i npl

Inside amodule archive, a. cl ass fileisfound in the package directory of the package to which it belongs.
Thus, the structure of the module archive for the module or g. hel 1 o might be the following:

org. hel l o-1. 0. 0. car
META- | NF/
MANI FEST. MF
org/
hel | o/
nodul e. cl ass //the nodul e descri ptor
mai n/
package. cl ass //a package descri ptor
hel | 0. cl ass
def aul t/
Def aul t Hel | 0. cl ass
personal i zed/
Per sonal i zedHel | 0. cl ass

A module archive may not contain multiple modules.

9.3.7. Module scripts

A Ceylon module script is a JavaScript source file which:

e complies with the CommonJS M odul es specification, and

» hasafilename which adheres to the standard for module script names.

9.3.8. Source archives

A source archiveisazi p archive which:

» containsthe source code (. ceyl on and . j ava files) for all compilation units belonging to the module, and

* hasafilename which adheres to the standard for source archive names.
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Inside a source archive, a Ceylon or Java source file is located in the package directory of the package to which the com-
pilation unit belongs. The package directory for a package belonging to the source archive is formed by replacing each
period in the fully qualified package name with the directory separator character.

Thus, the structure of the source archive for the module or g. hel | o might be the following:

org. hello-1.0.0.src
or g/
hel | o/

nodul e. ceyl on //the nodul e descri ptor

mai n/
package. ceylon //a package descri ptor
hel | 0. ceyl on

def aul t/
Def aul t Hel | 0. ceyl on

personal i zed/
Per sonal i zedHel | 0. ceyl on

A source archive may not contain the source of multiple modules.

9.3.9. Documentation archives

A documentation archiveisazi p archive which:

< contains the module documentation generated by the documentation compiler (. ht i and resources files), and
« hasafilename which adheres to the standard for documentation archive names.

Inside a documentation archive, HTML sourceislocated in the modul e- doc directory.

Thus, the structure of the documentation archive for the module or g. hel | o might be the following:

org. hello-1.0.0.doc. zip
nodul e- doc/
. resources/

i ndex. ht m
search. ht m
nodul e. ceyl on. ht
mai n/
i ndex. ht m
package. ceyl on. ht n
hel | 0. ceyl on. ht m
def aul t/
i ndex. ht m
Def aul t Hel | 0. ht m
Def aul t Hel | 0. ceyl on. ht m
personal i zed/
i ndex. ht m
Per sonal i zedHel | 0. ht m
Per sonal i zedHel | 0. ceyl on. ht m

A documentation archive may not contain the documentation of multiple modules.

9.3.10. Module repositories

A module repository is adirectory structure on the local filesystem or aremote HTTP server.

e A local module repository isidentified by afilesystem path.

« A remote module repository isidentified by a URL with protocol http: or https: .

A publishable module repository is alocal module repository, or a WebDAV -enabled remote module repository.
For example:

nmodul es

[ usr/ bi n/ ceyl on/ nodul es
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http://jboss. org/ ceyl on/ nodul es
htt ps://gavi n: secret @odul es. ceyl on-1ang. org

A module repository contains module archives, module scripts, source archives, and documentation archives. The address
of an artifact belonging to the repository adheres to the following standard form:

<r eposi t or y>/ <nodul e- pat h>/ <ver si on>/<arti fact >

where <r eposi t or y> is the filesystem path or URL of the repository, <arti f act > is the name of the artifact, <ver si on> is
the module version, and <nodul e- pat h> isformed by replacing every period with a slash in the module name.

The default module having no version, its access path does not contain the version.

<reposi t ory>/ def aul t/ <ar chi ve>

For example, the module archive ceylon.language-1.0.1.car, module script, source archive
ceyl on. I anguage- 1. 0. 1. sr ¢, and documentation archive belonging to the repository included in the Ceylon SDK are ob-
tained from the following addresses:

nodul es/ ceyl on/ | anguage/ 1. 0. 1/ ceyl on. | anguage- 1. 0. 1. car
nodul es/ ceyl on/ | anguage/ 1. 0. 1/ ceyl on. | anguage-1.0.1.js
nodul es/ ceyl on/ | anguage/ 1. 0. 1/ ceyl on. | anguage-1. 0. 1. src
nmodul es/ ceyl on/ | anguage/ 1. 0. 1/ ceyl on. | anguage- 1. 0. 1. doc. zi p

The module archive or g. hi ber nat e- 3. 0. 0. bet a. car, source archive or g. hi ber nat e- 3. 0. 0. bet a. src, and documenta-
tion archive belonging to the repository htt p: // j boss. or g/ ceyl on/ modul es are obtained from the following addresses:

http://jboss. org/ ceyl on/ nodul es/ or g/ hi ber nat e/ 3. 0. 0. bet a/ or g. hi ber nat e- 3. 0. 0. bet a. car
http://jboss. org/ ceyl on/ nodul es/ or g/ hi ber nat e/ 3. 0. 0. bet a/ or g. hi ber nat e- 3. 0. 0. bet a. src
http://jboss. org/ ceyl on/ nodul es/ or g/ hi ber nat e/ 3. 0. 0. bet a/ or g. hi ber nat e- 3. 0. 0. bet a. doc. zi p

The module archive org. h2-1.2.141.car and legacy archive org.h2-1.2.141.jar belonging to the repository /
usr/ bi n/ ceyl on/ modul es are obtained from the following addresses:

[ usr/ bi n/ ceyl on/ nodul es/ org/ h2/1.2.141/org. h2-1. 2. 141. car
/usr/bi n/ ceyl on/ modul es/ org/ h2/1.2.141/org. h2-1.2.141.j ar

For each archive, the module repository may contain a SHA-1 checksum file. The checksum file is a plain text file con-
taining just the SHA-1 checksum of the archive. The address of a checksum file adheres to the following standard form:

<r eposi t or y>/ <nodul e- pat h>/ <ver si on>/ <ar chi ve>. shal

The compiler or module runtime verifies the checksum after downloading the archive from the module repository.

A module repository may contain documentation generated by the Ceylon documentation compiler in exploded form. A
modul€e's documentation resides in the module documentation directory, a directory with address adhering to the following
standard form:

<r eposi t or y>/ <nodul e- pat h>/ <ver si on>/ nodul e- doc/

For example, the home page for the documentation of the module or g. hi ber nat e is:

http://jboss. org/ ceyl on/ nodul es/ or g/ hi ber nat e/ nodul e- doc/ i ndex. ht n
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9.3.11. Package descriptors
A package descriptor is defined in a source file named package. ceyl on in the package it describes.

PackageDescri ptor: Annotations "package" Ful | PackageNanme ";"

A package may be annotated shar ed. A shar ed package is visible outside the containing module, that is, in any module
which imports the containing module.

The package descriptor is optional for unshared packages.

"The typesafe query API."
license "http://ww.gnu.org/licenses/|gpl.htm"
shared package org. hi bernate. query;

9.3.12. Module descriptors

A module descriptor is defined in a source file named nodul e. ceyl on in the root package of the module it describes (the
package with the same name as the module).

Modul eDescri ptor: Annotations "nodul e" Ful |l PackageNane StringLiteral Mdul eBody

The literal string after the module name specifies the version of the module.
A module may import other modules.

Modul eBody: "{" Modul el nport* "}*"
Modul el nport: Annotations "inport" (FullPackageNane| StringLiteral) StringLiteral

The name of the imported module may be specified using the usual syntax for a module name, or as a literal string, to al-
low interoperation with legacy module repositories existing outside the Ceylon ecosystem.

Note: this enables interoperation with Maven.

Note: in Ceylon 1.0 it isillegal to explicitly import the module ceyl on. | anguage. The language module is always impli-
citly imported.

The string literal after the imported module name specifies the version of the imported module.

An imported module may be annotated opt i onal and/or shar ed.

e |f module x hasashar ed import of moduley, then any module that imports x implicitly importsy.
« If modulex hasan opti onal import of moduley, then x may be executed even if y is not available at runtime.

If a declaration belonging to module x is visible outside the module and involves types imported from a different module
y, then the module import of y in the module descriptor for x must be shar ed.

"The best-ever ORM sol ution!"
license "http://ww.gnu.org/licenses/|gpl.htm"
nodul e org. hi bernate "3.0.0. beta" {

shared inmport ceylon.|anguage "1.0.1";

i nport javax.sql "4.0";

"The test suite for Hibernate"
license "http://ww.gnu.org/licenses/|gpl.htm"
nmodul e org. hi bernate.test "3.0.0.beta" {
i nport org. hi bernate "3.0.0. beta";
TestSuite().run();

TODO: do we allow procedural code in the body of a nodul e?
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