J
“A
| T |
v gy

WildFly SWART §

GAVIN KING
RED HAT

CEYLON SWARM

CEYLON SWARM - JAVADAY 2017

CEYLON PROJECT

» A relatively new programming language which features:
» a powerful and extremely elegant static type system
» built-in modularity

» support for multiple virtual machine platforms: JVM,
Android, JavaScript, Dart

» powerful multi-language interoperation: Java, JavaScript,
Dart

» excellent tooling: CLI, Eclipse, IntelliJ, Android Studio

CEYLON SWARM - JAVADAY 2017

TODAY'S TOPIC

» When | was here last time, | talked a lot about the type
system (probably the most exciting topic)

» And a little about Ceylon’s module system

» This time I'm going to talk about interoperation with Java
frameworks with reference to a small demo app based on
the WildFly Swarm environment

» This is a great test case for interop, along with Eclipse,
IntelliJ, Android, and other smaller libraries and
frameworks

CEYLON SWARM - JAVADAY 2017

WILDFLY SWARM

» Lets you package your Java EE app and server as a “fat” jar
archive

» Offers Java EE APIs without the “container”

» bundle just the bits of WildFly you're using, together with
your app, and its dependencies, as a single jar file

» run it using java -jar

» Service discovery, failover, integration with Red Hat cloud
technologies

CEYLON SWARM - JAVADAY 2017

ADVANTAGES OF CEYLON ON SWARM

» True null safety, and in general, many more errors detected at
compile time

» Union and intersection types

» Tuples

» Type inference and flow-sensitive typing

» Much better support for use of immutability

» Streamlined definition of “model” or “data” classes

» Atypesafe metamodel (we'll see later how this is important!)

CEYLON SWARM - JAVADAY 2017

OUR DEMO APP

» We want to make the most of Java EE APIs including:
» JPA for persistence
» CDI for dependency injection

» JAX-RS for serving up JSON APIs

» transactional, etc

» And we want to write code using natural Ceylon and Java EE
idioms

» https://github.com/DiegoCoronel/ceylon-jboss-swarm/

https://github.com/DiegoCoronel/ceylon-jboss-swarm/

CEYLON SWARM - JAVADAY 2017

DO | REALLY NEED ALL THIS?

» No! Not unless you want it!
» There are plenty of other options:

» ceylon.dbc or standalone JPA for persistence
» ceylon. json for producing and parsing and JSON
» ceylon.http.server, Vert.x, many Java web frameworks

» Guice or Weld (or nothing!) for dependency injection

» If you prefer, Ceylon works with Spring, too

CEYLON SWARM - JAVADAY 2017

THE CHALLENGE

» JPA, CDI, and JAX-RS are annotation-driven frameworks
that work via reflection

» In earlier versions of Ceylon, the mapping to Java wasn't
optimized for annotation-driven Java frameworks

» need JPA converters / JAX-RS adaptors

» need to explicitly annotate methods default (non-final)
» problems with generatedValue and late

» Can make it work, but not great for a demo app

CEYLON SWARM - JAVADAY 2017

THE CHALLENGE

» JPA APIs aren’t optimized for usage from Ceylon

» setParameter() methods accept Object, and so

conversion to Java primitive wrapper types is not
automatic

» operations of EntityManager all accept null, but don't
know what to do with it

» These issues aren’t showstoppers, and you can certainly
use JPA APIs directly from Ceylon without difficulty, but it's
not quite as comfortable as we would like

CEYLON SWARM - JAVADAY 2017

THE SOLUTION

» The -ee compiler mode adjusts the mapping to Java so

that annotation-driven Java frameworks work more
smoothly with Ceylon objects

» Use direct field access in JPA and JAX-RS

» “ee mode” doesn’t affect binary compatibility at all, as the
public API of the class isn't affected

» nor does it affect reflection using Ceylon’s metamodel

» the only thing it affects is Java reflection

CEYLON SWARM - JAVADAY 2017

THE SOLUTION

» The SDK module ceylon.interop.persistence is a wrapper

for JPA that offers much enhanced type safety for a Ceylon
client

» In particular, it has a more typesafe criteria query API that
is much less verbose, and doesn’t depend on the use of an
annotation processor to generate a “model”

» available in gitorin 1.3.3!

» It also solves the little setParameter () discomfort

CEYLON SWARM - JAVADAY 2017

MODULARITY IN CEYLON

» Language level constructs for defining modules, expressing
their dependencies, and controlling visibility between modules

» Versioning

» Module archives and module repositories and automatic
fetching of dependencies at compilation time and runtime

» Module isolation at runtime
» Interoperation with Maven and npm

» Assembler tools for: Ceylon assembly archives, fat JARs, WARs,
WildFly Swarm, Jigsaw mlib, Maven repos, Dart assemblies

native(”jvm”)
module jaxrs.example "1.0.0" {
shared import javax.javaeeapi "7.0";
import ceylon.interop.persistence "1.3.3-SNAPSHOT";

<overrides xmlns="http://www.ceylon-lang.org/xsd/overrides”>
<module module="ceylon.interop.persistence”>
<remove groupld="org.hibernate. javax.persistence”
artifactId="hibernate-jpa-2.1-api”/>
<add module="javax.javaeeapi”
version="7.0"/>
</module>
</overrides>

CEYLON SWARM - JAVADAY 2017

SETTING UP A SWARM PROJECT

» That's everything!
» no maven, no build scripts, no additional configuration

» As a shortcut | added ee=true to my Ceylon config to
avoid having to specify -ee on the command line

» Assemble and run it!

native(”jvm”)

— I | L - 1 - ~ ~ 11

» Run 'jaxrs.example in Swarm' ~“{*R 0" -

|

& Debug 'jaxrs.example in Swarm' ~{+D ,é ”i.3.3—SNAPSHOT”-
)

CEYLON SWARM - JAVADAY 2017

ASSEMBLY WITH SWARM

» The swarm plugin for the ceylon command assembles a
WildFly Swarm fat jar for a given Ceylon module

» ceylon plugin install swarm
» ceylon compile

» ceylon swarm --provided-module=javax. javaeeapi
jaxrs.example

» java -jJar Jaxrs.example-1.0.0-swarm. jar

» The IntelliJ + Eclipse IDEs can do all this for us in one step

CEYLON SWARM - JAVADAY 2017

ASSEMBLY FOR APPLICATION SERVER

» Alternatively, the war plugin for the ceylon command
assembles a standard Java war for the Ceylon module

» ceylon compile

» ceylon war --static-metamodel --provided-
module=javax. javaeeapl jaxrs.example

» Deploy it to WildFly (or other server)

» No code or project metadata changes required!

shared entity class Employee(name) {

generatedValue 1id
shared late Integer 1id;

column { length = 50; }

shared String name;

column
shared variable Integer? year = null;

post

consumes {"application/json”}

produces {"application/json”}

shared Employee persist(Employee employee) {

service.persist(employee);
return employee;

CEYLON SWARM - JAVADAY 2017

CRITERIA QUERIES IN JPA

» Java doesn’t have a typesafe model of elements
belonging to the Java program

» JPA defines a metamodel for use with criteria queries, but
it must be generated using an annotation processor

» The criteria query APl is — overall — highly verbose, quite

clumsy to use, and lacking in typesafety, due mainly to
limitations of the Java language (no tuples!)

CEYLON SWARM - JAVADAY 2017

CRITERIA QUERIES IN CEYLON

» Ceylon features a typesafe metamodel built in — it's a bit
like Java reflection, but with:

» typed model objects representing program elements
» typesafe references to program elements

» I've written a criteria query API that follows the basic
design of JPA's API, but is much more typesafe, and is
based on Ceylon’s metamodel

» it's much more pleasant to use

shared List<out Employee> employeesForName(String name) {
value crit = entityManager.createCriteria();
return
let (e = crit.from(Employee'))

crit.where(equal(e.get('Employee.name'),
crit.parameter(name)))

.select(e)
.getResultlList();

CEYLON SWARM - JAVADAY 2017

CONCLUSION

» The resulting code is extremely clean and elegant

» The assembly process (ceylon swarm command) is a little
slower than | would like, but tolerable

» The "ee mode” is not just for Java EE — it works with other
reflection-based Java frameworks

» The new criteria query APl is way better

» This is a really simple demo app, but the technologies it's
using offer a mountain of really robust functionality

CEYLON SWARM - JAVADAY 2017

CONCLUSION

» It's a great platform for building microservices
» You should be able to get productive really quickly

» The Ceylon language offers so much more that you can
grow into

» Next stop: dockerize and deploy to cloud

