
#DevoxxUS 

Ceylon on Android
Gavin King 

Red Hat

@1ovthafew#ceylonlang



#DevoxxUS 

Ceylon

A relatively new programming language which features: 

• a powerful and extremely elegant static type system 

• built-in modularity 

• support for multiple virtual machine platforms: JVM, Android, 
JavaScript, Dart 

• powerful multi-language interoperation: Java, JavaScript, Dart 

• excellent tooling: CLI, Eclipse, IntelliJ, Android Studio

@1ovthafew#ceylonlang



#DevoxxUS 

Modularity in Ceylon
The module system offers: 

• language level constructs for defining modules, expressing their dependencies, and 
controlling visibility between modules 

• versioning 

• module archives and module repositories and automatic fetching of dependencies at 
compilation time and runtime 

• module isolation at runtime 

• interoperation with Maven and npm 

• assembler tools for: Ceylon assembly archives, fat JARs, WARs, WildFly Swarm, 
Jigsaw mlib, Maven repos, Dart assemblies

@1ovthafew#ceylonlang



#DevoxxUS 

Ceylon on Android
You get: 

• True null safety, and in general, many more errors detected at compile time 

• Anonymous functions (lambdas)  

• powerful stream processing and comprehensions 

• Union and intersection types 

• Tuples 

• Type inference and flow-sensitive typing 

• Much better support for use of immutability 

• Streamlined definition of “model” or “data” classes

@1ovthafew#ceylonlang



#DevoxxUS 

The challenge

• As a total novice to the Android platform, I wanted to port the 
Android sample app UniversalMusicPlayer from Java to Ceylon 

• This is a sufficiently large program to test real-world usability 

• I’m using Android Studio with the Ceylon IDE plugin 

• To make this as realistic as possible, it was done in a massive rush 
under time constraints

@1ovthafew#ceylonlang



#DevoxxUS 



#DevoxxUS 

Integration with Gradle

First hurdle: 

• The Ceylon compiler integrates dependency resolution and 
management, including Maven interop, as part of its module system  

• with dependencies defined in module.ceylon 

• Android is extremely dependent on the use of Gradle for 
dependency management: to expand AAR assemblies, to generate 
R.java files, to fetch bits and pieces of the SDK, to run dex, etc 

• with dependencies defined in build.gradle

@1ovthafew#ceylonlang



#DevoxxUS 

Integration with Gradle

Solution: 

• The Ceylon Gradle plugin for Android integrates the Ceylon compiler 
into Android’s build process 

• In particular, it aggregates the JAR archives produced by the Cradle 
build into a standard Ceylon module repository layout, making 
Android modules visible to Ceylon’s module system 

• And, of course, it runs the Ceylon compiler 

• It supports the mixing of Ceylon and Java code in a single module

@1ovthafew#ceylonlang



#DevoxxUS 

Integration with Gradle

The solution works, but is imperfect: 

• Copying files around makes the build process even a bit slower than it 
already is 

• We have to express module dependencies twice: in module.ceylon, and 
in build.gradle 

• On the other hand, it seems pretty robust and any “better” solution would 
probably break between Android releases 

• Ultimately this is just some boilerplate stuff that you add to a new project

@1ovthafew#ceylonlang



#DevoxxUS 

Rewrite in Ceylon

‘Paste Java as Ceylon’ does most (90%) of the work: 

• The two languages are sufficiently similar that most of the 
translation can be automated 

• The Ceylon compiler allows a module to be written in a mix of 
Ceylon and Java code, so this can be incremental 

• Thus, the process was to copy/paste one file at a time, trying to 
keep the app working all the way along

@1ovthafew#ceylonlang



#DevoxxUS 

Rewrite in Ceylon

First source of pain: 

• The IntelliJ plugin does not (yet) make Ceylon declarations visible to 
Java source in the same module 

• The code actually compiles, as long as we ignore the annoying 
red errors highlighted in the Java code 

• We must translate incrementally “top down”, starting with the UI 

• Or we could write the new Ceylon code in a separate module

@1ovthafew#ceylonlang



#DevoxxUS 

Rewrite in Ceylon

Second source of pain: 

• Lots of Java fields are “implicitly” null 

• But it’s very hard to mechanically distinguish which 

• Problem exacerbated by “late” initialization in, for example, 
onCreate() instead of constructor 

• ‘Paste Java as Ceylon’ can’t distinguish these cases

@1ovthafew#ceylonlang



#DevoxxUS 

A word about null safety

The term “null safety” doesn’t just mean having nullable and not-nullable 
types 

• In Java, null is the default value for an uninitialized field — and Java 
doesn’t prevent access to uninitialized fields, not even uninitialized final 
fields 

• So “null safety” also requires some rather heavy-handed compile time 
validation of initialization logic, or the type system would simply be unsound! 

• Since there are certain cases (circular references) which can’t be checked 
at runtime, Ceylon has a late annotation to mark those

@1ovthafew#ceylonlang



#DevoxxUS 

Rewrite in Ceylon

Therefore, the translation to Java involved lots of manual intervention 
to decide between three cases: 

• The field can be definitely initialized in the initializer or constructor, 
and is never null 

• The field is really initialized just once, but in an onCreate()-type 
method, declare it late 

• The field is really nullable, declare its type Whatever? 

• (In any one of these three cases, the fields might be variable!)

@1ovthafew#ceylonlang



#DevoxxUS 

Rewrite in Ceylon

• This is sufficiently tricky that I actually screwed up a couple of times, and 
got InitializationErrors from late fields at runtime 

• But that’s a lot better than getting NullPointerExceptions far from the 
source of the initialization bug! 

• And these were basically the only errors I ran into at runtime — as usual, 
the Ceylon compiler found most of my bugs for me as soon as I typed them 

• There was one class with such complex initialization dependencies 
between it and its several inner classes, that I actually had to struggle a bit 
to come up with something the compiler would accept

@1ovthafew#ceylonlang



#DevoxxUS 

Rewrite in Ceylon

• It’s also extremely common in Java to (unnecessarily) assign a local 
variable more than once 

• ‘Paste Java as Ceylon’ correctly handles this case, of course, by 
annotating the local variable 

• But that’s bad style in Ceylon, and I felt compelled to eliminate all 
these variables by slightly restructuring the code

@1ovthafew#ceylonlang



#DevoxxUS 

Rewrite in Ceylon

• To my surprise, I discovered that Android developers are still forced 
to switch over integer constants (in 2017!) 

• Ceylon developers have these oh-so incredibly sophisticated new 
things called “enumerated types”, so we don’t usually have to do 
that, and so Ceylon’s switch statement didn’t support it 

• I got bored of rewriting case as else if, so I decided to downgrade 
a Ceylon compiler error to warning 

• And now we can do this “fancy” switching on integer constants too!

@1ovthafew#ceylonlang



#DevoxxUS 

Rewrite in Ceylon

• As promised I was able to eliminate several inner classes and replace 
them with anonymous functions 

• However, this had much less of an impact than I expected, since quite 
a number of Android’s callback types are classes instead of interfaces 

• Ceylon supports conversion of SAM interface types, but not SAM 
class types 

• I’ve opened an issue ;-) 

• Using an anonymous function loses identity, which caused a big bug

@1ovthafew#ceylonlang



#DevoxxUS 

Rewrite in Ceylon

• The sample app doesn’t do much interesting stream or collection 
processing 

• But I did use some trivial stream processing and a couple of 
comprehensions 

• For now, I didn’t even bother to use Ceylon’s collection types, and just left 
the java.util collections everywhere 

• There’s no reason at all to avoid the use of Java collections in Ceylon! 

• Comprehensions, loops, operators, etc, work with Java collections

@1ovthafew#ceylonlang



#DevoxxUS 

Rewrite in Ceylon

• The Java language doesn’t support null safety, but a number of 
Java libraries offer @Nullable / @NotNull annotations 

• The Ceylon compiler will use them when determining the type of a 
Java method or field, if they exist 

• Otherwise, it records the fact that the method or field might be 
nullable 

• Android has a @Nullable annotation but unfortunately it’s declared 
Retention(SOURCE), making it useless to us

@1ovthafew#ceylonlang



#DevoxxUS 

Conclusions

• I’m happy with the end result: the code is significantly cleaner, and it’s more 
typesafe due to the way Ceylon handles null 

• Since this was basically a lot of pretty mechanical UI-oriented plumbing 
code, and because of time constraints, I didn’t really run into any problem 
which could show off any of the really awesome bits of Ceylon 

• Ceylon IDE isn’t perfect, but it was one huge advantage over other 
languages on IntelliJ — the ‘Problems View’ 

• Setting breakpoints in Ceylon code did not work on Android for some reason 

• I ran into a couple of bugs, and got them fixed

@1ovthafew#ceylonlang



#DevoxxUS 

Conclusions

End result is available at : 

https://github.com/gavinking/UniversalMusicPlayer 

But note that it depends on (unreleased) Ceylon 1.3.3.

@1ovthafew#ceylonlang

https://github.com/gavinking/UniversalMusicPlayer

